Gravitational Microlensing Observations

Optical Astronomy from an Urban Observatory

Grant Christie Stardome Observatory, Auckland

New Zealand and the Beginnings of Radio Astronomy Orewa, Jan 30-31, 2013

Auckland Observatory opened on March 21, 1967 The 0.5m Zeiss Cassegrain was the largest telescope in New Zealand

UBV Photoelectric Photometer (1969-1999)

Research Programmes

- Sequence determination for the VSS
- Cataclysmic binaries (discovered superhumping)
- Long period variables
- Cepheids
- Delta Scuti variables (large amplitude)
- Eclipsing binaries (EW)

Auckland to Chile – 9,800km

Auckland to Australia – 2,100km

New boundaries of Auckland City 2010

- \circ ~1.4 million people
- ~50,000 street lights
- **~4,500 km²**

Latitude 36° 54' S

Photometric Observatories in Auckland

0.5m Zeiss Cassegrain (F13.3)

UBV photoelectric photometry 1969-1999

Funding available for a technological upgrade

0.4m Meade LX200 ACF F/10 Paramount GT1100s STL-6303E CCD (BVRI)

Extra-solar Planets

- How many stars have planets?
- How do planets form?
- Is our solar system typical?
- Are there other Earths?
- How many can support life?

The "Snow Line"

Hotter Stars

Sun-like Stars

Cooler Stars

Kepler Space Telescope

MicroFUN Ohio State University

- Planet discovery by microlensing
- Pro-Am collaboration
- Cutting-edge science that engages the public

Google: "microfun"

Gravitational *microlensing*

Observer

Source

Lens

model for gravitational bending

Image formed of a point source at infinity

The chance of seeing this is less than 1 in 500,000

Simple Event – no planets

Bulge

26,000 light yrs

Mark A. Garlick / space-art.co.uk

1.8m MOATEL

MOA – Mt John Observatory, NZ

OGLE - Las Campanas, Chile

1.3m Warsaw University Telescope

Magnification map for a star with two planets

An amazing range of "light curves" can be generated depending on the path taken through the lens by the background star

OGLE-2006-BLG-109

OGLE-2006-BLG-109

Our Solar System

OGLE-2006-BLG-109

OGLE-2012-BLG-0026Lb, c

A new two-planet system

March 2012

ApJ 762, L28, 6 pp. (2013)

Very small planet orbiting a brown dwarf

Results to Date

- 20+ planets (2004-2012) 7 in the last season
- Planetary system with Saturn/Jupiter analog (2006)
- Second 2-planet system (2012)
- Planets orbiting brown dwarfs
- 13 publications in 2012 (11 ApJ, 1 MNRAS, 1 A&A)
- Networks of small telescopes are effective at detecting exoplanets

Acknowledgements

MicroFUN MICROLENSING FOLLOW- UP NETWORK

Tim Natusch Haydn Ngan Tony Burns

Jennie McCormick

David Moorhouse Guy Thornley

Marc Bos

What have we learned?

- Planets are common
- Our solar system seems to be typical. We estimate that ~12% of all stars have a solar system like ours
- There may be 2 nomad planets for every star in the galaxy
- Small telescopes can find planet

Farm Cove Observatory Jennie McCormick

0.35m F/10 Meade LX200R

Auckland Observatory: Atmospheric Extinction

"Nomad" planets: Life may not need a sun

Europa may have life in an ocean 20 km beneath its icy surface

Thank you

OGLE-2005-BLG-071

5 arc min

NGC 6444

The Life Cycle of the Sun

Stages in the formation of a new planetary system

Apogee APop CCD

Optec TCF focuser

Optec filter wheel

OGLE-2005-BLG-071

The inner terrestrial planets

Mercury Venus Earth Mars

Multiple masses create a complicated caustic pattern

18 Days

Effect of Parallax & Orbital Motion

GRB091029 z = 2.75

Stardome 0.4m + CCD

GROND on 2.2m

Fig. 1. GROND g'-band image of the field of GRB 091029 obtained 463 s after T_0 . The optical afterglow is shown inside the *Swift* XRT error circle with double diameter for better clarity. The secondary standard stars are numbered from 1 to 4 and their magnitudes reported in Table 1.

Exposure: 35min

SUBJECT: GRB 091029: Observations from Stardome Observatory G. W. Christie (Stardome Obs., New Zealand), S. Dong (IAS, Princeton), A. de Ugarte Postigo (ESO, Chile) and T. Natusch (Stardome Obs., New Zealand) report:

The fading afterglow (Filgas et al., GCN 10098; LaCluyze et al., GCN 10099; de Ugarte et al., GCN 10104; Marshall et al. GCN 10108) was clearly detected in all images over the observing period, yielding the following psf photometry(DOPHOT) :

UT (mid)	delT	R1	Err	(statistical)
29.32713	3.901	19.34	0.09	
29.34906	4.428	19.32	0.08	
29.37120	4.959	19.43	0.08	
29.39311	5.485	19.46	0.08	
29.41503	6.011	19.67	0.08	
29.43360	6.456	19.57	0.08	
29.45862	7.057	19.73	0.08	
29.50946	8.277	19.93	0.12	
29.53164	8.809	19.94	0.09	
29.56044	9.501	20.16	0.09	
29.59390	10.304	20.21	0.11	
29.61620	10.839	20.21	0.13	
29.63853	11.375	20.36	0.16	
29,66081	11,910	20.41	0.17	

where delT is the mid-exposure time in hours since trigger. Photometric calibration was done against USNOB1 0340-0030262

RA (J2000.0): 04h 00m 38.61s, DEC(J2000.0): -55d 55' 37.3" assuming R1=16.40.

GRB 091029: At the limit of the fireball scenario

R. Filgas^{1,2}, J. Greiner¹, P. Schady¹, A. de Ugarte Postigo^{3,4}, S. R. Oates⁵, M. Nardini^{6,1}, T. Krühler^{4,1,7}, A. Panaitescu⁸,
D. A. Kann⁹, S. Klose⁹, P. M. J. Afonso^{1*}, W. H. Allen¹⁰, A. J. Castro-Tirado³, G. W. Christie¹¹, S. Dong¹², J. Elliott¹,
T. Natusch¹³, A. Nicuesa Guelbenzu⁹, F. Olivares E.¹, A. Rau¹, A. Rossi⁹, V. Sudilovsky¹, and P.C.M. Yock¹⁴

Photometric Observatories in Auckland

Auckland Observatory (Stardome) 0.4m Meade ACF, Paramount GT1100s, STL6303E CCD Filters: BVRI, OG530 Gravitational microlensing, variable stars, astrometry

Farmcove Observatory 0.35m Meade ACF, SBIG ST8ME CCD Gravitational microlensing, variable stars, astrometry

Kumeu Observatory 0.35m Celestron SCT, SBIG 2000 Filters: OG530 Gravitational microlensing, variable stars

Molehill Observatory 0.30m Meade SCT, custom mount, SBIG ST8ME CCD Gravitational microlensing, variable stars

Lowther Observatory 0.25m Meade SCT, SBIG ST7ME CCD Variable stars

Collaborations

MicroFUN Ohio State University

Center for Backyard Astrophysics Columbia University

Minor Planets Center (MPC) Boston MA

View west from the summit of Maungakiekie (One Tree Hill)

ation that the same restance

Auckland Observatory: Sky Background

Magnitudes (arc-sec)⁻²

	z=30	z=50	FM 12
В	19.72	19.75	19.43
V	18.40	18.29	18.17
R	18.49	18.29	18.22
I	18.72	18.93	18.55

View from the summit of Maungakiekie (One Tree Hill) Looking north

View from the summit of Maungakiekie (One Tree Hill) Looking south

UBV Photoelectric Photometer (1969-1999)

Research Programmes

- Sequence determination for the VSS
- Cataclysmic binaries (discovered superhumping)
- Long period variables
- Cepheids
- Delta Scuti variables (large amplitude)
- Eclipsing binaries (EW)

30 years of atmospheric extinction data and measurements of sky background brightness in the U, B and V bands using the same instrument.

Bessel-Johnson UBVRI filters for DIAFI

•U

В

R

MICROLENSING FOLLOW- UP NETWORK

Predicted Sizes of Different Kinds of Planets

Microlensing Surveys

- Measure the brightness of ~10⁸ stars per night
- Detect ~10³ events per year
- Issue alerts for events by email and Twitter

Stages in the formation of the Solar System

Microlensing – pros

- Detects mass, not luminosity
- Samples the entire mass range G to M *plus* brown dwarfs, white dwarfs, neutron stars and black holes
- Planets in both the galactic disk and the bulge
- "Instantaneous" planetary detection
- Planets beyond the "snowline"
- Planets as small as Mars
- Multiple planets (in high-mag events)
- Free-floating (nomad) planets
- Powerful test of planet formation theories
- Can show the *absence* of planets

Microlensing-cons

- Precise alignments are rare
- Alignments don't repeat
- Discoveries are very distant we'll never go there!
- Some solutions are degenerate

Planets orbiting the lensing star produce "caustics" - disturbances in the gravitational lens

They make the lens wrinkly

Looking through a gravitational lens

Lensing galaxies make much bigger rings

