Mahmoud Mahmoud PhD Student Institute for Radio Astronomy & Space Research (IRASR) AUT University.

SCHEDULING OPTIMIZATION FOR SKA HPC MIDDLEWARE Computing for SKA (C4SKA) Colloquium 2015

Middleware

- Is software that facilitates combination of autonomous operating environments into a unified operating environment.
- Communication management:
 - Hides network protocols.
 - Common interface for communication.
 - Data type marshaling.
- Resource management:
 - Resource monitoring.
 - Task scheduling.
 - Load balancing.
- Distributed application development:
 - Programming language.
 - Integrated development environment (IDE).
 - Debugging and profiling tools.

Distributed (Parallel) Application

Distributed (Parallel) Application

Examples of some HPC Middleware Usage in Radio Astronomy

 DiFX – MPI based parallel software correlator.

 IBM InfoSphere Streams – correlation, RFI mitigation, and imaging.

ARTEMIS Pelican/Panda – pulsar search pipelines.

Basic Parallel Processing Scheduling Theory

- A parallel application is defined by a set of tasks and communications.
- Tasks may be partially ordered and represented as by a task graph.
- The task graph is referred to as a job.

 $\frac{m(a+1)}{m+a}$ Shorter

Classical Scheduling Theory Optimality Criteria

- Schedule length
- Maximum lateness
- Mean tardiness
- Number of late tasks
- Weighted number of late tasks
- Mean flow time
- Mean weighted

SKA "Big Data" Problem Implications on Scheduling

- Big data volumes impractical to store for later processing.
- To avoid mass storage data must remain in motion.
- Data in motion is data streaming and implies pipeline (stream) based processing architecture.
- O Power efficiency criteria

Stream Processing Paradigm

Stream Processing Paradigm

Minimum Power Dissipation Based Scheduling

- Oynamic Programming
- Minimal Power Dissipation Path
- Make simplifications to reduce number of combinations
 - Initial conditions
 - Best effort no gaurantee
- Multiple job scheduling
- Adapting to change

Metrics

chained parallel process application:

 $\begin{array}{cccc} p_1 & b_{1,2} \\ c_1, m_1 & c_2, m_2 \end{array} \xrightarrow{b_{2,3}} p_3 \\ c_3, m_3 \end{array}$

 p_i : process i (uuid)

 c_i : compute requirements for process *i* (unit data operations per unit time)

 $m_i: me\overline{mory} \ requirements \ of \ process \ i \ (unit \ data)$

 $b_{i,j}$: output bandwidth from process i to process j (unit data per unit time)

distributed computing resource:

 r_s : processor s (uuid)

- k_s : compute capability of processor s (unit data operations per unit time)
- d_s : memory capacity of processor s (unit data)

 $w_s: power usage of processor s$ (unit power per unit data operations)

 $l_{s.t}$: link bandwidth between processor s and t (unit data per unit time)

 $p_{s,t}$: link power usage between processor s and t (unit power per unit data)

 $(r_3)^{l_{2,3},p_{2,3}} k_{3,w_3,d_3}$

 k_2, w_2, d_2

 r_2

112291.2

L1.3.01.3

 r_1

 k_1, w_1, d_1

Example

Example

References

- Orozdowski, M. (2009). Scheduling for parallel processing. London: Springer.
- Sinnen, O. (2007). Task scheduling for parallel systems (Vol. 60). John Wiley & Sons.
- Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. *Numerische mathematik*, 1(1), 269-271.
- Andrade, H., Gedik, B., & Turaga, D. (2014). Fundamentals of Stream Processing: Application Design, Systems, and Analytics. Cambridge University Press.