

# SKA Workshop Feb 2015

Feb, 2015

**DDN** Australia

# DDN is a Leader in Massively Scalable Platforms and Solutions for Big Data and Cloud Applications

- **Established: 1998**
- Revenue: \$250M+ Profitable, Fast Growth
- Main Office: Sunnyvale, California, USA
- Worldwide Presence: 20 Countries
- Installed Base: 1,000+ End Customers; 50+ Countries
- **Go To Market: Global Partners, Resellers, Direct**



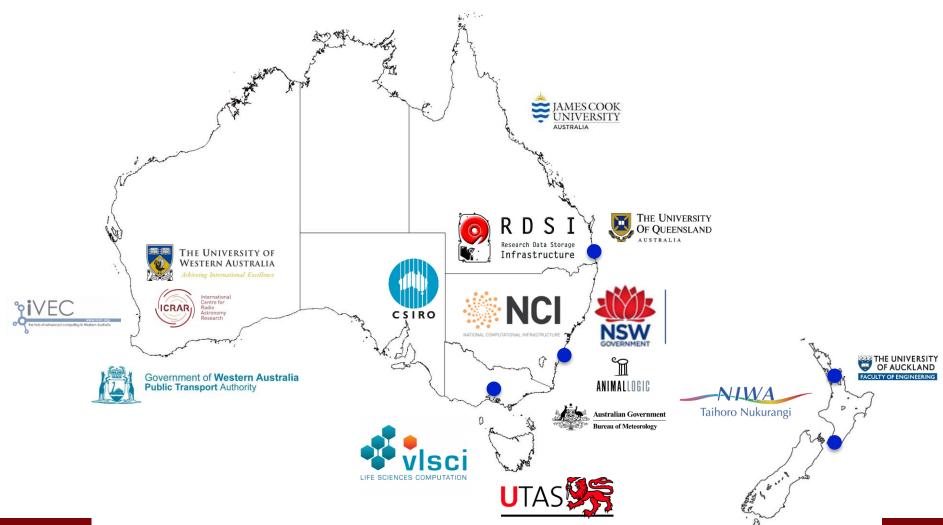
#### World-Renowned & Award-Winning







W HPC


STORAGE

Federal Computer Week

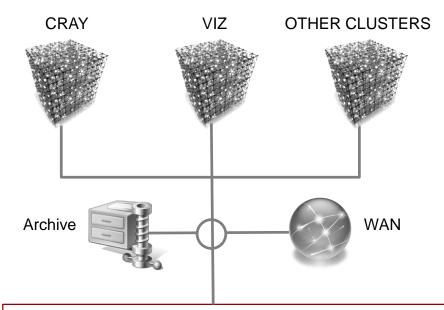




# Sample Customers Australia & New Zealand






3

© 2015 DataDirect Networks, Inc. \* Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.

# **Oak Ridge National Laboratory**

Case Study: Building The World's Fastest File System





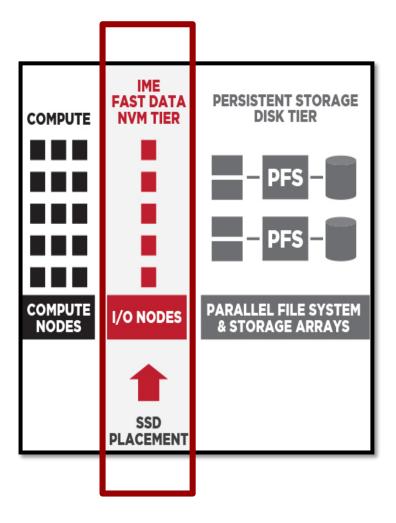
#### ORNL Selected DDN SFA12K Technology To Power The World's Fastest Storage

#### DDN was selected because:

- Sustained Quality of Service @ Scale
- Best Price/Performance
- Leadership-Class Data Center Density
- Open-Platform For Parallel File I/O
- Deep Expertise in Scaling File Storage



File System Performance: 1TB/s+ Capacity: 40.3PB (raw) File System: Lustre<sup>®</sup> I/O Platform: 36 x DDN SFA12K-40 Media: 20,160 HDDs




4

## What is IME? A Tier of Non-volatile Memory

**Residing Between Compute and Persistent Storage** 

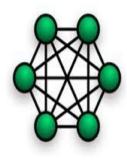
IME creates a new application-aware fast data tier that resides right between compute and the parallel file system to accelerate I/O, reduce latency and provide greater operational and economic efficiency





# **DDN IME Ecosystem – Client IO Interfaces**

## Three primary interfaces for IME


IME FUSE

Provides POSIX IO

- Captures IO requests through the Linux VFS
- Target Use Case: General purpose applications that use POSIX
- IME ROMIO
  - Provides MPI-IO support
  - Captures IO requests through the MPI runtime in user space
  - Target Use Case: Parallel applications
- IME Native Library
  - Low-level programming interface
  - FUSE and ROMIO layers implemented on this interface
  - Target Use Case: Highly-optimized customer applications that may not map cleanly onto POSIX or MPI-IO



# The IME Advantages



7

Designed for Scalability Patented DDN Algorithms



**Fully POSIX & HPC Compatible** No Application Modifications



Scale-Out Data Protection Distributed Erasure Coding



Intelligent, Adaptive System On-the-Fly Data Placement



Integrated With File Systems Designed to Accelerate Lustre\*, GPFS No Code Modification Needed



Writes Fast; Read Fast Too No other system offers both at scale.



© 2015 DataDirect Networks, Inc. \* Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.



# **The IME Advantages**



**1000X Application Acceleration** Run More Complex Simulations Faster With Less Hardware



#### **50% Less Latency Than All Flash Arrays** Optimizing Workload Performance to reduce time to insight and discovery



Scales Memory to 100s of TB To Move Large Datasets Out of storage & into memory extremely fast, without storage latency



**80% Lower Cost** Infinite Scalability With the Highest Efficiency To provision I/O Performance with the Highest Efficiency



© 2015 DataDirect Networks, Inc. \* Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.



#### **Early Access Testbeds Deployed Globally**

At customer sites and regional benchmark centers since June





CONFIDENTIAL

NDA ONLY

9

© 2015 DataDirect Networks, Inc. \* Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.

# **HACC\_IO** @ TACC (from Hardware/Hybrid Accelerated Cosmology Code)

Cosmology Kernel

| Particles<br>per<br>Process | Num.<br>Clients | IME Writes<br>(GB/s) | IME Reads<br>(GB/s) | PFS<br>Writes<br>(GB/s) | PFS<br>Reads<br>(GB/s) | COMPUTE<br>CLUSTER              |
|-----------------------------|-----------------|----------------------|---------------------|-------------------------|------------------------|---------------------------------|
| 34M                         | 128             | 62.8                 | 63.7                | 2.2                     | 9.8                    | 80 GB/s                         |
| 34M                         | 256             | 68.9                 | 71.2                | 4.6                     | 6.5                    | 17 GB/s BURST                   |
| 34M                         | 512             | 73.2                 | 71.4                | 9.1                     | 7.5                    | BUFFER                          |
| 34M                         | 1024            | 63.2                 | 70.8                | 17.3                    | 8.2                    |                                 |
| IME<br>Acceleration         |                 | 3.7x-28x             | 6.5x-11x            |                         |                        | Lustre PFS<br>HACC_IO Cosmology |



S3D @ TACC

#### **Turbulent Combustion Kernel**

| Processes | X    | Y     | Z   | IME<br>Write<br>(GB/s) | PFS<br>Write<br>(GB/s) | Acceleration | COMPUTE<br>CLUSTER       |
|-----------|------|-------|-----|------------------------|------------------------|--------------|--------------------------|
| 16        | 1024 | 1024  | 128 | 8.2                    | 1.2                    | 6.8x         | 60.8 GB/s                |
| 32        | 1024 | 2048  | 128 | 14.0                   | 1.5                    | 9.3x         | 3.3 GB/s BURST           |
| 64        | 1024 | 4096  | 128 | 22.3                   | 1.5                    | 14.9x        | BUFFER                   |
| 128       | 1024 | 8192  | 128 | 31.8                   | 3.0                    | 10.6x        |                          |
| 256       | 1024 | 16384 | 128 | 44.7                   | 2.6                    | 17.2x        | Lustre PFS               |
| 512       | 1024 | 32768 | 128 | 53.5                   | 2.4                    | 22.3x        |                          |
| 1024      | 1024 | 65536 | 128 | 60.8                   | 3.3                    | 18.4x        | S3D Turbulent Combustion |



# MADBench @ TACC

| Phase         | IME Read<br>(GB/s) | IME Write<br>(GB/s) | PFS<br>Read<br>(GB/s) | PFS<br>Write<br>(GB/s) | COMPUTE<br>CLUSTER       |
|---------------|--------------------|---------------------|-----------------------|------------------------|--------------------------|
| S             |                    | 71.9                |                       | 7.1                    | 70+ GB/s                 |
| W             | 74.6               | 75.5                | 7.8                   | 8.7                    | 8.7 GB/s BURST<br>BUFFER |
| С             | 74.7               |                     | 11.9                  |                        |                          |
| IME<br>Accel. | 6.2x-9.6x          | 8.7x-10.1x          |                       |                        | Lustre PFS               |

Application Configuration: NP = 3136, #Bins=8, #pix = 265K



# 13 IME Test Nodes (Minimum of 4 nodes)

- 2 E5-2650v2 8 cores CPUs with HT enabled
- ▶ 128 GB RAM (8 x 16GB DDR3-1866 ECC REG)
- ▶ 1 dual port InfiniBand FDR HCA, OFED 2.2, IPolB configured
- Centos 6.5, kernel 2.6.32-431.23.3
- THP enabled
- 24 240GB SSD drives
- 2 SAS2308 PCI-Express Fusion-MPT SAS-2

# Approx 10GB/sec per node



# **IME Product Offerings**

Ideally Suited for Commercial Customers, DIY Customers & DDN OEMs

# <image>

Your I/O Server

DDN IME Server Software







Your Compute Nodes

DDN IME Client Software



**DDN IME I/O Server Appliance** 



DDN IME Server Software

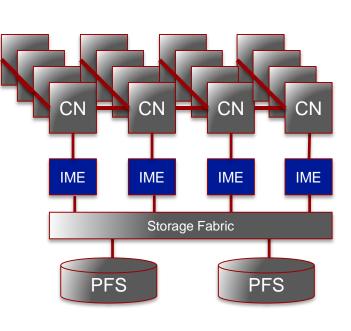


#### 15 DDN CONFIDENTIAL INTERNAL USE ONLY

# Example: PFS vs. IME+PFS

#### More peak bandwidth, same persistent capacity, lower cost and HIGHER VALUE

#### PFS Only


Cluster Memory: 400 TB

Cluster I/O BW: 540 GB/s

Storage Fabric: 540 GB/s

#OSS: 112 #SFA: 14 #HDD per SFA (5\*80)= 400

#HDD Total: 5,600



### IME + PFS

Cluster Memory: 400 TB

Cluster I/O BW: 756 GB/s

Storage Fabric: 270 GB/s

#OSS: 56 #SFA: 7 #HDD per SFA (10\*80)= 800

#HDD Total: 5,600

IME Value Proposition **40% more bandwidth to the cluster** Faster job turn-around, more jobs in same period, fewer nodes needed to complete same amount of work

- Fewer OSS and SFAs
- Reduced power, space and operational cost
- Similar persistent capacity
- Lower overall capital cost

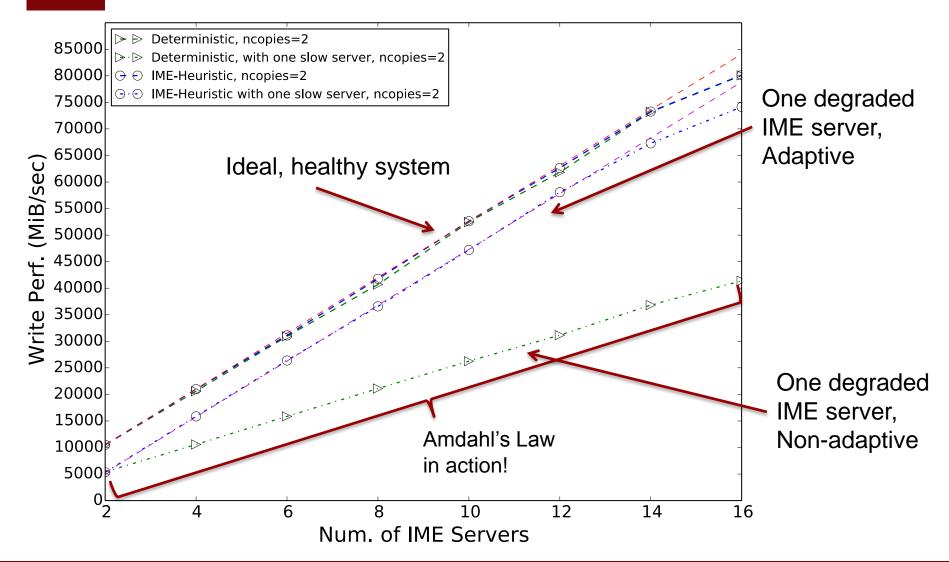


© 2015 DataDirect Networks, Inc. \* Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.



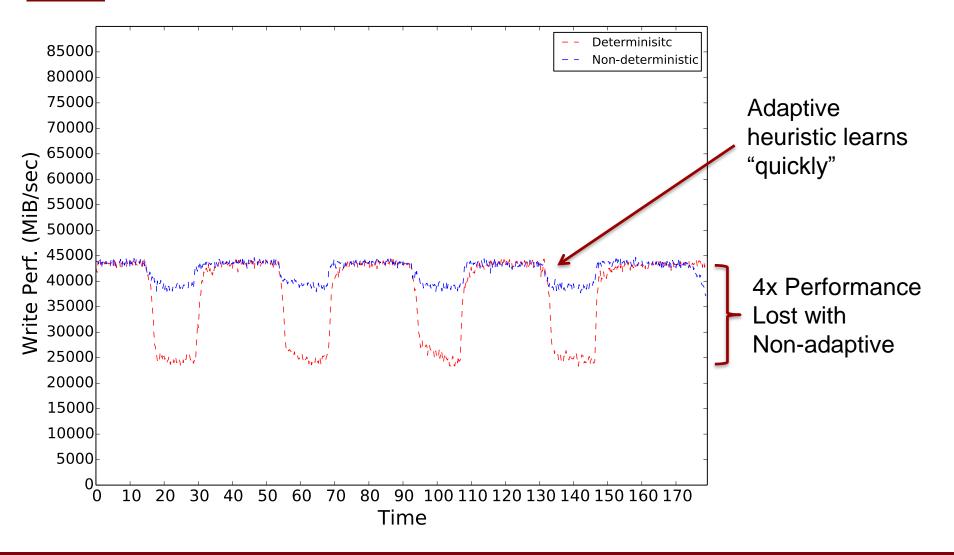


**Common Capacity Configs** 9 to 73 TB (usable) per 50 GB/s bandwidth. Guidance based on numerous RFP responses


- Our basic IME Appliance is intended to provide >50 GB/s bandwidth, and configured with 24 to 48 NVMe SSDs. The NVMe SSDs are expected to have 480GB, 960GB, or 1.92TB raw capacity
- To account for data protection overheads, we assume an 0.86 usable capacity factor
- Basic IME Appliance configuration:
  - Between 9 and 73 TB of usable capacity per 50 GB/s
  - Other capacities and bandwidths are possible, and when using 72 SAS SSDs per IME Appliance, the capacities can go higher than 150 TB per 50 GB/s



#### DataDirect<sup>™</sup> N E T W O R K S


## Thank you

# Aggregate IME Adaptive vs. Non-Adaptive WRITE Performance





# Real-Time IME Adaptive vs. Non-adaptive WRITE Performance





19