

SQUARE KILOMETRE ARRAY

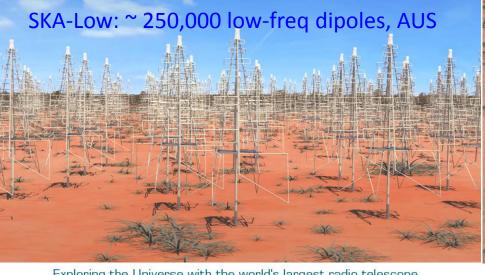
Exploring the Universe with the world's largest radio telescope

Marco Caiazzo February 2015

International Design Team

- Project Management and System Engineering Team based at Jodrell Bank Observatory, Manchester, UK
- ~500 scientists & engineers in institutes and industry in 14 Member countries of the SKA

SKA Phase 1


2 sites (South Africa, Australia);

SKA Phase 2

~2500 dishes, baseline lengths up to 3500km ~10⁶ dipoles, baseline lengths ~few hundred km ~250 dense aperture array stations

Construction: 2023 – 2030 ~ LHC scale

SKA Precursor: MeerKAT

64 x 13.5m offset Gregorian antennas 8km maximum baseline length First receivers:

0.9 – 1.67 GHz (L-band) 0.58 – 1 GHz (UHF) 770 MHz bandwidth Early operations 2016/7

Exploring the Universe with the world's largest radio telescope

Latest: first light with L-band receiver and digitiser

SKA Precursor: MeerKAT

Infrastructure: dish assembly shed; bunkered and RFI shielded data processor room and power system +

Murchison Radio Astronomy Observatory

Shire of Murchison:

- 50,000 km²; size of the Netherlands
- 0 gazetted towns
- 29 sheep/cattle stations
- 110 population

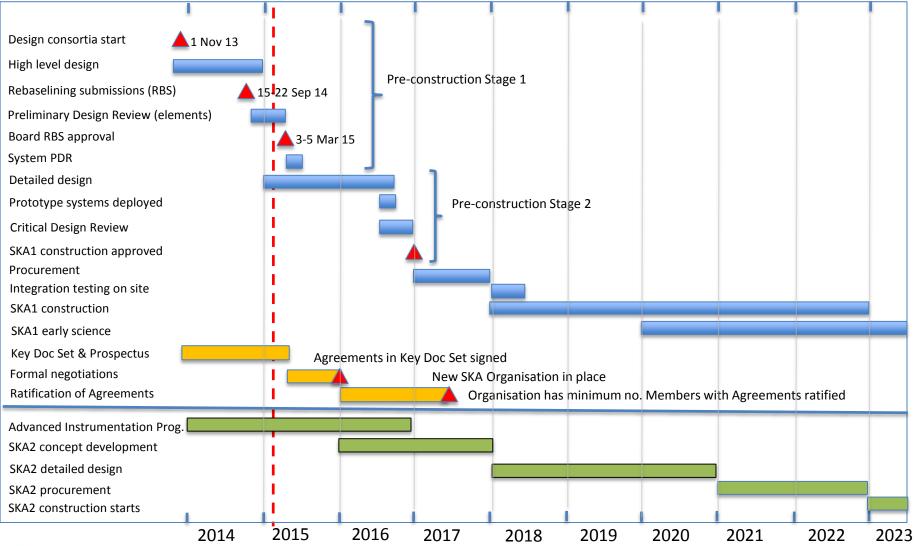
ASKAP – a new-technology survey telescope

- 36 x 12m antennas
- 3 axis movement
- 30m 6km baselines
- Novel PAF receiver
- 700MHz 1800MHz
- Wide field of view

Fast survey speed

ASKAP commissioning

- 6 antennas equipped with MkI PAFs; extensive commissioning programme
- Science being done
- ASKAP early open science expected mid-2015


SKA Precursor: Murchison Widefield Array

MWA operational: 17 refereed papers published; more coming.

High-level SKA1 Schedule

KEY: Blue = SKA1 science & engineering; orange = policy; green = SKA2

Exploring the Universe with the world's largest radio telescope

Andrea Casson, SKAO Project Controller, Sept 2014

SKA: Driving development

- Dishes, feeds, receivers (N=250 \rightarrow 2500)
- Low and mid aperture arrays (n=250k \rightarrow 1000k)
- Signal transport ($\approx 1 \text{ Pb/s} \rightarrow 10 \text{ Pb/s}$)
- Signal processing (exa-MACs)
- Software engineering and algorithm development
- High performance computing (exa-flop capability)
- Data storage (exa-byte capacity)
- (Distributed) power requirements (10 \rightarrow 50MW)

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

Thank-you www.skatelescope.org