SDP Compute for 50 Years - an awareness

C4SKA at AUT
2017-02-09

tn@compucon.co.nz (personal opinion)
Outline

- Costs of SKA1 in Euro
 - Design and Construction ~ 1B
 - Operating = 115M * 50 years
 - Electricity ~ 8%
 - SKA2 budget ~ 10 times?

- Challenges on SDP
 - Wave after wave of revamping
 - 9 Overviews
 - 1 Philosophical View- not that!

Image Credit
https://thenounproject.com/term/old-man/191197/
SKA Process Overview

Image credit: SDP Consortium Update 2016-06-21 Jeremy Cole page 12
SDP Science Objectives Overview

- System Sizing paper (SDP-038, Cambridge, 2016-0721)
 - Assumed 25% hardware utilisation efficiency (remember this)
 - Not based on peak computational capacity requirements
SDP Design Overview

(not to scale)

- Architecture
- QA
- AT
- MT
- Architecture
- Integration Prototyped

- Software
- Hardware

- Tender & Contract
- Construct

2017-02-09

2018-03-31
SDP Algorithm Overview

Continuum Imaging most demanding & reduction process is iceberg of the tip below

- **Algorithm AI (dataset size dependent)**
 - Gridding: \(Nk^2 > 100 \)
 - FFT: \(5/32 \log_2 N < 5 \)
 - Cleaning ?

- **x86 Hardware AI (fixed)**
 - CPU < 5
 - Xeon Phi ~ 5
 - GPU > 25

- **Challenge**
 - Assumption of 25% HWU?
SDP Hierarchy Overview
Prescribed by Execution Framework SDP-015

- System Hierarchy
 - X compute islands
 - master node + data buffer + Y compute nodes
 - Same for LOW & MID

Source: SDP-018 Data Processor Platform (ASTRON 2016-0715)
Hardware Parameters Overview
Meet $, wattage, HWU, AI

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Target</th>
<th>LOW</th>
<th>MID</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVA</td>
<td>4</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>PF</td>
<td>0.85</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>PUE</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td>2.83</td>
<td>3.19</td>
<td></td>
</tr>
<tr>
<td>PFLOPS</td>
<td>27.8</td>
<td>29.3</td>
<td></td>
</tr>
<tr>
<td>PF/MW</td>
<td>9.81</td>
<td>9.19</td>
<td></td>
</tr>
<tr>
<td>GF/w</td>
<td>9.81</td>
<td>9.19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Target</th>
<th>LOW</th>
<th>MID</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFLOPS</td>
<td>27.8</td>
<td>29.3</td>
<td></td>
</tr>
<tr>
<td>TFLOPS</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Eff-base</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Node</td>
<td>5560</td>
<td>5860</td>
<td></td>
</tr>
<tr>
<td>per rack</td>
<td>33</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Racks</td>
<td>168.5</td>
<td>177.6</td>
<td></td>
</tr>
<tr>
<td>Eff-discr</td>
<td>0.26</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>Racks</td>
<td>162.0</td>
<td>170.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Target</th>
<th>LOW</th>
<th>MID</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW</td>
<td>2.83</td>
<td>3.19</td>
<td></td>
</tr>
<tr>
<td>Node</td>
<td>5560</td>
<td>5860</td>
<td></td>
</tr>
<tr>
<td>W/node</td>
<td>510</td>
<td>544</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 on AI attainable on # GPU
Assume GPU capable of 1TB/s implying 5.5PB/s LOW 5.8PB/s MID

<table>
<thead>
<tr>
<th>PFLOPS</th>
<th>27.8</th>
<th>29.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>No. of GPU</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>55600</td>
<td>58600</td>
</tr>
<tr>
<td>1</td>
<td>27800</td>
<td>29300</td>
</tr>
<tr>
<td>1.25</td>
<td>22240</td>
<td>23440</td>
</tr>
<tr>
<td>1.66</td>
<td>16747</td>
<td>17651</td>
</tr>
<tr>
<td>2.5</td>
<td>11120</td>
<td>11720</td>
</tr>
<tr>
<td>5</td>
<td>5560</td>
<td>5860</td>
</tr>
</tbody>
</table>

- Hardware Sizing Guidance
 - 1TB/s
 - 5TFLOPS SP
 - AI = 5
 - 25% HWU
 - ~500W
 - >5000 nodes @
Technology Trend Overview

1965 – 2015 Moore’s Law
Cost per transistor has been on a linear decline during Moore’s Period

2015 – 2030 Moore’s Wall
Reaching physical limits
Trends and Challenges in Big Data, Ion Stoica, UC Berkeley, PDSW-DISCS 16, slide 43
Near Term Technology

- **CPU**
 - 25% performance improvements
 - Mostly by increasing number of cores, SOC and SIP (such as EMIB)

- **Memory**
 - 35 per year
 - Stacked technologies
 - Attain 1TB/s in 2017 (AMD Vega HBM2)

- **Network**
 - 40% per year
 - 100/200/400GbE NIC on horizon
Long Term Technology

- 2017 – 2030 Evolutionary
 - Software catching up on hardware
 - Allows expansion of science objectives
 - SKA2 on scope, dynamic range & resolution

- 2030 – 2070 Revolutionary
 - New programming model
 - FPGA
 - Quantum
 - Memory Processing

- Immediate Thought
 - Sub-arraying is a good idea
New Zealand 50 Years

- Views for SDP
 - High or Low language abstraction?
 - Open or Closed SW standards?
 - More emphasis on HW knowledge

- NZ well positioned
 - Contribute to SKA
 - Spin off via academic-industry collaboration projects
 - Collate range of expertise
 - Promote open architecture

Being aware of situation