
A Vision (vs view) of Optimal

(vs potential) SDP Compute

Node Configuration

- a lot more advanced than a year ago

- not always traditional wisdom compliant

C4SKA at AUT

2019-02-14 & 15

tn@compucon.co.nz

mailto:tn@compucon.co.nz

Contents
a co-design exercise

2

Optimal
Vision

Efficiency

Roof
Scape

Scaling

N
◦
 Parallel

Experiment

Math

Intuit

Benchmarks

emphasised by 3 Turing

laureates

1. Vision of a compute node
 optimal >> 10% overall SDP efficiency

3

3 cores for 3 GPU

scheduling, rest for

science computing in

collaboration with a GPU

Over half of SDP

science algorithms are

memory intensive. Even

for compute intensive

apps, G1H of 3x price of

G3L may deliver 2x

performance only

Each GPU must be

on direct non-

switchable PCIe

links

2. Compute Efficiency
 Interim target for optimization

Each application has its own compute efficiency

How to estimate an average efficiency of pipeline

for hardware resource estimation?

4

Visibility from CSP

Imaging Pipeline

Local Sky Model

3. Roof Scape
 Foundation of co-design framework

a. Compute Efficiency =
Roofline Efficiency x
Programming Efficiency

b. Composite Operational
Intensity of Pipeline

(OI)p = Σ [Wi * (OI)i] if (OI)i
< (OI)r + Σ [Wi * (OI)r] if
(OI)i >= (OI)r

 SDP Size = 259 PFLOPS
DP / (X PFLOPS DP * CE p *
Y) where Y is scaling
efficiency

Credit of Roofline Model

and OI definition to UC

Berkeley and images to

KAIST and Berkeley Lab

5

Kernel 3 & 4

Compute Bound

4. Scaling Efficiency
 Loss of compute efficiency

 Speed Up = N / (1+a*(N-1)+b*N*(N-1))
Where N is number of compute nodes or workers

Credit to Gene Amdahl and Neil Gunther for 2 applicable laws

 Cholesky Factorization of 60kx60k in 100x100 blocks by
EYPC 7351P with 16 cores
Credit to StarPU for scheduling (& optimization)

Almost linear scaling for up to 16 cores (98% SE) despite high
data dependency

LHS

RHS

6

5. Degrees of Parallelism
 A hierarchy

MAMI

SAMI

SASI

7

More degrees at

pipeline level

(independent

splits) for

Optimising

Scaling Efficiency

Implementable

with (view only)

• Software in

2020

• Hardware 2025

S for single, M for Multiple, I for instance

6. (Bonus Slide) Illustration

 Cholesky Factorization written in C

 Block approach speeds up about 5 times (white columns)

 in 4 problem sizes & 3 hardware arrangements

 Figures are runtime in millisecond

 Findings

 More Cores are needed if only CPU is available (yellow)

 GPU is not always faster than CPU (brown)

 CPU + 1 GPU was optimal in hardware utilisation (light green)

8

Vision 2021 at C4SKA-2020
revealing efficiency on a bigger scale

9

Optimal

SDP

Compute
Node

Efficiency

Hardware
Scaling

Efficiency

N
◦
 Parallel

SDP ARL-

based

science

pipeline C

code

