Scientific Computing for the SKA

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

Robert Braun, SKA Science Director 14 February 2019

21st Century Observatories

LIGO: operational

ALMA: operational

SA

Infrared

ATHENA:

Microwaves

Radio waves

Gamma

Ultraviolet X-rays

SKA– Key Science Drivers: The history of the Universe

Broadest science range of any facility on or off the Earth.

The SKA Observatory

SKA: A global Research Infrastructure

Members Host Countries: Australia, South Africa, United Kingdom

Observers

African partner countries

Negotiations to establish SKA Inter-Governmental Organisation.

Text of Convention and protocols now agreed Initialing of documents completed Ministerial signing ceremony 12 March 2019

Transition planning underway

Square Kilometre Array 3 sites; 2 telescopes + HQ 1 Observatory

Design Phase: ~€170M; 600 scientists+engineers

Phase 1 Construction: <u>2020 – 2025</u> Construction cost cap: €650M (2013€)

MeerKat integrated Observatory Development Programme

SKA Regional Centres out of scope of centrally-funded SKAO

SKA and Big Data

The SKA Operational Model

SKA1-MID

- Digital data rates are reduced by factor ~100 within SDP via calibration and data product generation
- SDP output rate compatible with 100 Gb/s per site

The SKA Data Flow Challenge

 Observatory Data Products flow from the Science Data Processors in Perth and Cape Town to SRCs around the globe

The SKA Data Flow Challenge

Science Error Budgets for SKA1

Parameter	Definition
η_{F}	Far sidelobe suppression factor
ε _F	Far sidelobe attenuation relative to on-axis
ε	Near-in sidelobe attenuation relative to on-axis
ε _M	Discrete source modelling error
P (arcs)	Mechanical slowly varying systematic pointing error
τ _P (min)	Timescale for slowly varying pointing error
ε' _Ρ	Rapidly varying random pointing induced gain error
τ' _P (sec)	Timescale for rapid pointing errors
ε _Q	Main beam azimuthal shape asymmetry
ε	Main beam shape/gain modulation with frequency

- Scientific Error Budgets for SKA1-Mid and SKA1-Low (Doc #641 released)
- Small number of key instrumental and calibration parameters that determine quality of SKA data products
- Parametric model that relates each variable to a corresponding image noise for a given observational strategy
- Distribute noise degradation over all independent factors

- Individual "noise" contributions in a 1000^h deep field
 - Pointing errors (electronic or mechanical)
 - Unmodelled sky sources in far- and near- side-lobes
 - Unmodelled beam shape and spectral gain fluctuations
 - Insufficient source modelling precision

- Requirements for < 20% noise degradation in a 1000^h deep field
 - Electronic pointing induced gain errors must be < -25 dB, mechanical < 0.1 arcsec
 - Unmodelled beam shape and spectral gain fluctuations must be < -40 to -35 dB
 - Precision of source modelling must exceed 35 dB
 - Brightest 4 dex of sources in main beam and near-in sidelobes must be modelled
 - Brightest 2.5 dex of all-sky sources must be modelled at lowest frequencies

SKA1 Calibration Requirements (Doc #941 released)

- Science Data Processor Parametric Model for SKA calibration and imaging has key parameters:
 - Use-Case Parameters: B_{Max} , v_{Min} and v_{Max} , T_{Point} (**total** depth for pointing)
 - Calibration Parameters: are all strong functions of ($B_{Max},\,\nu$ and T_{Point})
 - N_{Ateam}, number of all-sky "de-mixing" sources
 - N_{Source}, number of main beam and near-in side-lobe sources
 - N_{SelfCal}, N_{Major}, number of self-cal iterations, deconvolution cycles
 - N_{Ipatches}, different directions requiring complex gain solution
 - τ_{Sol} , $(\Delta v/v)_{Sol}$, time and frequency resolution of gain solutions
- SKAO Model for functional dependence of the Calibration parameters on the Use-case parameters
 - Celestial source number densities and sizes
 - Dish/station beam solid angle versus attenuation

Celestial Source Models

• Based on "T-RECS" simulation outputs at 0.15, 1.4 and 15 GHz

Station/Dish Beam models

• Beam modelling of SKA1-Low stations and SKA1-Mid dishes for integration of source counts, including side-lobes

SKA1 Calibration Strategy

n _{min} (GHz)	n _c (GHz)	n _{max} (GHz)	Sub- band	Band	N _{Ateam}	N _{Source}	S _{Max} (Jy)	S _{Min} (Jy)	N _{SelfCal} / N' _{SelfCal}	N _{Maj} / N' _{Maj}	N Ipatch
0.050	0.060	0.069	Low sb1		19	36820	68	14m	6/1	3/1	336
0.069	0.082	0.096	Low sb2		15	35270	32	3.9m	6/1	3/1	180
0.096	0.114	0.132	Low sb3		12	28390	14	1.4m	5/1	3/1	93
0.132	0.158	0.183	Low sb4		10	24760	6.3	0.7m	5/1	3/1	48
0.183	0.218	0.253	Low sb5		9	17050	2.8	0.5m	5/1	3/1	25
0.253	0.302	0.350	Low sb6		8	9602	1.3	0.5m	5/1	2/1	20
0.35	0.41	0.48	Mid sb1	B1	8	29860	2.0	0.3m	6/1	3/1	36
0.48	0.56	0.65	Mid sb2	B1	5	25140	0.9	0.1m	6/1	3/1	20
0.65	0.77	0.89	Mid sb3	B1	3	21530	0.4	60 ∞	5/1	3/1	20
0.89	1.05	1.21	Mid sb4	B2	2	18770	0.2	20∝	5/1	3/1	20
1.21	1.43	1.65	Mid sb5	B2	1	16290	90m	15∝	5/1	3/1	20
1.65	1.95	2.25	Mid sb6		0	11430	50m	9 ∞	5/1	3/1	20
2.25	2.66	3.07	Mid sb7		0	6660	31m	7∝	5/1	3/1	20
3.07	3.63	4.18	Mid sb8		0	3770	20m	6∝	5/1	3/1	20
4.18	4.94	5.70	Mid sb9	B5a	0	2087	13m	5∝	5/1	2/1	20
5.70	6.74	7.78	Mid sb10	B5a	0	1117	8m	4 ∞	4/1	2/1	20
7.78	9.19	10.61	Mid sb11	B5b	0	582	5m	4x	4/1	2/1	20
10.61	12.53	14.46	Mid sb12	B5b	0	293	3m	3∝	4/1	2/1	20

 Modelled calibration parameters that should permit ~thermal noise limited data products within very deep integrations

SKA1 High Performance Computing Requirements

Exploring the Universe with the world's largest radio telescope

SQUARE KILOMETRE ARR

HPC Breakdown by Use Case type

 When total HPC significant, then dominated by DFT

-requency (GHz)	「_Point (h)	Total HPC (PFlops)	Average	Correct	De-grid	De-grid Kernel Update	De-mix	DFT	FT	[:] lag	Grid	Grid Kernel Update	D Comp	FFT	hase Rot	hase Rot Predict	Receive	Re-project	Re-project Predict	òolve	ource Find	Subtract Image Comp	Subtract Vis	/is Weighting
0.06	0.1	1.1	0	22	3	10	5	27	0	0	3	10	0	4	1	1	0	0	3	0	0	0	0	0
0.08	0.1	1.1	0	16	3	9	6	33	1	1	3	9	0	5	2	2	0	0	3	0	0	0	0	0
0.11	0.1	0.9	0	11	4	9	8	33	1	1	4	9	0	6	2	2	0	0	4	0	0	0	0	0
0.16	0.1	0.9	0	6	4	9	9	38	1	1	4	9	0	5	2	2	0	0	3	0	0	0	0	0
0.22	0.1	0.9	0	3	4	8	12	43	0	1	4	8	0	4	2	2	0	0	3	0	0	0	0	0
0.3	0.1	1	0	2	7	4	13	48	1	1	7	4	0	4	0	0	0	0	3	0	0	0	0	0
0.42	0.1	3.7	0	2	5	6	1	36	2	0	5	6	0	10	6	6	0	1	6	0	0	0	0	0
0.57	0.1	3.6	0	1	5	5	1	40	2	0	5	5	0	10	6	6	0	1	6	0	0	0	0	0
0.77	0.1	3.8	0	2	5	4	1	42	2	1	5	4	0	10	6	6	0	1	6	0	0	0	0	0
1.05	0.1	3.4	0	3	5	3	0	42	2	1	5	3	0	10	6	6	0	1	6	0	0	0	0	0
1.43	0.1	3.0	0	4	5	2	1	42	2	1	5	2 1	0	20	2	2	0	1	0 10	0	0	0	0	0
4.94 6 74	0.1	1.5	0	5	5	1	0	01	6	2	5	1	0	30	1	 Л	0	2	18	0	0	0	0	0
9.2	0.1	1.5	0	3	4	1	0	6	6	3	4	1	0	32	5	5	0	3	19	0	0	0	0	0
2.54	0.1	1.1	0	3	15	0	1	5	5	4	15	0	0	28	0	0	0	3	15	0	0	0	0	0
0.06	3	1.5	0	16	2	8	3	46	0	0	2	8	0	3	1	1	0	0	2	0	0	0	0	0
0.08	3	2	0	9	1	5	3	63	0	0	1	5	0	2	1	1	0	0	2	0	0	0	0	0
0.11	3	1.9	0	5	2	4	3	68	0	0	2	4	0	2	0	0	0	0	2	0	0	0	0	0
0.16	3	1.9	0	2	2	4	4	71	0	0	2	4	0	2	0	0	0	0	1	0	0	0	0	0
0.22	3	1.5	0	1	2	4	6	68	0	0	2	4	0	2	1	1	0	0	1	0	0	0	0	0
0.3	3	1.2	0	2	6	3	11	56	0	1	6	3	0	4	0	0	0	0	2	0	0	0	0	0
0.42	3	8.6	0	1	2	5	0	49	1	0	2	5	0	9	6	6	0	1	6	0	0	0	0	0
0.57	3	8.3	0	0	2	5	0	52	1	0	2	5	0	8	6	6	0	1	5	0	0	0	0	0
0.77	3	8.6	0	1	3	4	0	53	1	0	3	4	0	9	5	5	0	1	6	0	0	0	0	0
1.05	3	7.5	0	1	3	4	0	51	1	0	3	4	0	9	5	5	0	1	6	0	0	0	0	0
1.43	3	/.5	0	2	4	3	0	52	1	0	4	3	0	12	5	5	0	1	6	0	0	0	0	0
4.94 6 7/	3	1	0	7	10	3 2	0	10	2	3	10	3 2	0	13	10	10	0	1	8 7	0	0	0	0	0
0.74	2	1	0	7	11	2	1	10	2	4	11	2	0	11	10	12	0	1	7	0	0	0	0	0
2.54	3	0.8	0	4	13	2	2	8	2	6	13	2	0	13	8	8	0	1	8	0	0	0	0	0
2.34	5	0.7	0	7	10	2	2	U	2	U	13	2	0	10	U	U	U	1	U	U	0	0	0	U

HPC Breakdown by Use Case type

 When total HPC significant, then dominated by DFT

requency (GHz)	_Point (h)	otal HPC (PFlops)	Average	Correct	0e-grid	De-grid Kernel Update	De-mix	DFT	÷Π	lag	arid	Grid Kernel Update	D Comp	FFT	hase Rot	hase Rot Predict	Receive	Re-project	Re-project Predict	olve	ource Find	ubtract Image Comp	ubtract Vis	ris Weighting
0.06	100	6.1	0	4	0	2	0	82	0	0	0	2	0	1	0	0	0	0	1	0	0	0	0	0
0.08	100	8	0	2	0	2	0	87	0	0	0	2	0	1	0	0	0	0	0	0	0	0	0	0
0.11	100	6.9	0	1	0	1	1	87	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0
0.16	100	6.5	0	0	0	1	1	88	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0
0.22	100	5	0	0	0	2	2	86	0	0	0	2	0	1	0	0	0	0	1	0	0	0	0	0
0.3	100	3.3	0	0	1	3	3	79	0	0	1	3	0	2	0	0	0	0	1	0	0	0	0	0
0.42	100	25.2	0	0	1	5	0	63	1	0	1	5	0	7	3	3	0	1	5	0	0	0	0	0
0.57	100	24.7	0	0	1	4	0	66	1	0	1	4	0	6	3	3	0	0	4	0	0	0	0	0
0.77	100	26.5	0	0	1	3	0	68	1	0	1	3	0	6	3	3	0	0	4	0	0	0	0	0
1.05	100	24	0	0	1	3	0	69	1	0	1	3	0	6	3	3	0	0	4	0	0	0	0	0
1.43	100	25.6	0	0	1	2	0	72	1	0	1	2	0	5	3	3	0	0	3	0	0	0	0	0
4.94	100	2.3	0	3	4	2	0	49	1	1	4	2	0	8	6	6	0	1	5	0	0	0	0	0
6.74	100	1.7	0	5	6	2	0	44	1	2	6	2	0	8	5	5	0	1	5	0	0	0	0	0
9.2	100	1.2	0	8 10	10	2	1	33	1	4	10	2	0	10	8	8	0	0	4	0	0	0	0	0
0.00	100	0.9	0	10	10	2	1	21	2	5	10	2	0	10	0	0	0	1	0	0	0	0	0	0
0.06	1K 1k	24.8	0	1	0	1	0	91	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
0.08	1k	24.8	0	0	0	1	0	93	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0.16	1k	18.7	0	0	0	1	0	93	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
0.22	1k	13	0	0	0	1	0	91	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
0.3	1k	7.7	0	0	0	2	1	87	0	0	0	2	0	1	0	0	0	0	1	0	0	0	0	0
0.42	1k	57.9	0	0	1	4	0	69	1	0	1	4	0	6	1	1	0	1	4	0	0	0	0	0
0.57	1k	60.7	0	0	1	3	0	73	1	0	1	3	0	5	1	1	0	0	4	0	0	0	0	0
0.77	1k	69.4	0	0	1	3	0	77	0	0	1	3	0	4	1	1	0	0	3	0	0	0	0	0
1.05	1k	67.2	0	0	1	2	0	79	0	0	1	2	0	4	1	1	0	0	3	0	0	0	0	0
1.43	1k	76.7	0	0	0	2	0	83	0	0	0	2	0	3	1	1	0	0	2	0	0	0	0	0
4.94	1k	6	0	1	2	2	0	71	1	0	2	2	0	5	3	3	0	0	3	0	0	0	0	0
6.74	1k	4.3	0	2	2	1	0	68	0	1	2	1	0	4	4	4	0	0	3	0	0	0	0	0
9.2	1k	2.6	0	3	4	1	0	59	1	1	4	1	0	6	3	3	0	0	4	0	0	0	0	0
L 2.5 4	1k	1.6	0	6	5	1	1	49	1	3	5	1	0	6	6	6	0	0	3	0	0	0	0	0

HPC Breakdown by Use Case type

- HPC dominated by calibration, rather than data product generation
 - Implications for central HPC relative to dispersed HPC given limitations on data transmission (only highly compressed visibilities can be exported)
- HPC cost (when significant) dominated by DFT

HPC Prediction Caveats

- Computational efficiency assumed to be 10%; could be much better (LOFAR EoR GPU-based pipeline achieving >80% utilisation, but smaller problem scale)
- Better representation of Direction Dependent Calibration methods needed in Parametric model
- HPC costs dominated by DFT; could be implemented with much higher than 10% efficiency (as noted above for GPUs)

Some Use Case Distributions

- "Unconstrained Case": 320 + 307 PFlops (@10% efficiency)
 - Process full bandwidth: 50 350 MHz (Low); SPF 1, 2, 5a, 5b (Mid)
 - Process at full resolution: B_{Max} = 65 (Low); 150 km (Mid)
 - Uniform mix of experiment depths: T_{Point} = 0.1, 3, 100, 1000^h

Some Use Case Distributions

- "Constrained Case": 175 + 224 PFlops (@10% efficiency)
 - Process bandwidth: half of 50 350 MHz (Low); SPF 1, 2, 5a, 5b (Mid)
 - Process at resolution: B_{Max} = 65 (Low); 50, 100 or 150 km (Mid)
 - Uniform mix of experiment depths: T_{Point} = 0.1, 3, 100, 1000^h

Some Use Case Distributions

- "Highly Constrained Case": 35 + 46 PFlops (@10% efficiency)
 - Process half band: (50 350 MHz)/2 (Low); (SPF 1, 2, 5a, 5b)/2 (Mid)
 - Process at resolution: B_{Max} = 40 (Low); 50, 100 or 120 km (Mid)
 - Uniform mix of experiment depths: T_{Point} = 0.1, 3, 100^h
 - Defer T_{Point} = 1000^h

- "HPC Capped Case": 25 + 25 PFlops (@10% efficiency)
 - Process half band: (50 350 MHz)/2 (Low); (SPF 1, 2, 5a, 5b)/2 (Mid)
 - Process at resolution: B_{Max} = 40 (Low); 50 or 120 km (Mid)
 - Experiment depths: T_{Point} = 0.1, 3, 100^h
 - Constant + Power law dependence of schedule fraction on HPC load
 - Defer T_{Point} = 1000^h

Implications of 25 + 25 PFlops (@10 % effic.)

- Deferral of deepest integrations: $T_{Point} \approx 1000^{h}$
- Loss of simultaneity from half bandwidth
- Relatively low scheduling fractions for 0.35 1 GHz (about half "uniform")
- High scheduling fractions for > 5 GHz used to provide load balancing

Implications of 25 + 25 PFlops (@10 % effic.)

• Archive Constraints: 300 + 300 PBytes / Year

- Adopt schedule fractions from Capped HPC = 25 + 25 PFlops scenario
- Limits on spectral-line fraction imposed by 100 Gb/s per telescope link
- Constant + exponential dependence of spectral-line fraction on Data Product Rate
- Only mild constraints on SKA1-Low
- Strong constraints on short observations with SKA1-Mid imposed by link speed

Desired HPC, Network and Archive Capacity

- Vital to co-design software and hardware tuned to eliminate bottlenecks
- Data transport
 - SKA1-Low: 1 2 x 100 Gb/s
 - SKA1-Mid: 5 10 x 100 Gb/s
- Archive
 - SKA1-Low: 300 600 PB/yr
 - SKA1-Mid: 1500 3000 PB/yr

- Overview of preparatory and scientific observing activities
- KSP Preparatory Activities
 - Pilot surveys in Shared-risk and PI Proposal Cycles
 - Commissioning data to facilitate survey and pipeline design

SQUARE KILOMETRE ARRAY

