
SKA SDP: Cloud Native

Kubernetes just ate your PaaS!

piers@catalyst.net.nz
February, 2019

open source technologists

Overview

● Cloud Native
● Kubernetes
● Science as a Service
● The SKA
● Where’s your PaaS?

open source technologists

Cloud Native

open source technologists

Cloud Native

Is the embodiment of modern software delivery practices
Supported by tools, frameworks, processes and platform
interfaces.
These capabilities are the next evolution of Cloud
Computing, raising the level of abstraction for all actors
against the architecture from the hardware unit to the
application component.

open source technologists

Cloud Native advantages

Cloud Native exploits the advantages of the Cloud
Computing delivery model:
● PaaS layered on top of IaaS
● CI/CD – fully automated build,test,deploy
● Modern DevOps – auto-scaling, monitoring feedback

loop
● Software abstraction from platform compute, network,

storage
● Portability across Cloud Services providers

open source technologists

Cloud Native Software Delivery Life Cycle

Why Cloud Native SDLC? - cohesion for distributed project

● Codify standards - testing gates
● Code quality, consistency and assurance – CI/CD
● Automation – build AND rebuild (zero day)
● Portability of SDI as well as code
● Reference implementation – best practices, and

exemplars
● Engagement – an open and collaborate system “Social

Coding Platform”
● Integration with SRC, and other projects – the future

platform

open source technologists

SDLC: software life-cycle management

Cloud Native opportunities for automation:
Build, test, deploy, scale

open source technologists

Science as a Service – why Cloud Native fits

open source technologists

Delivering the SDP - SaaS

SDP is compelling Science as a Service use case with
requirements like:
● 24x7 data capture and processing
● Limited range of processing pipelines
● Storage limitations
● In manufacturing terms - if visibilities are the primary

product, then SDP data products are the secondary
product that scientists create tertiary products from

● A distributed problem: Software Development and
Service Delivery

open source technologists

Cloud Native - SaaS

To realise Science as a Service:
● need a common set of standards for software

development and deployment that will scale from the
laptop to the super computer

● giving certain guarantees about:
● Re-usability
● Portability

This will enable processing to move seemlessly(ish)
between facilities, limited only by bandwidth, storage, and
processing capacity.

open source technologists

Kubernetes – a unifying abstraction layer

open source technologists

Kubernetes – provides standards

Impact on the actors:
● developers: a known and dependable working

environment
● devops: a mechanism for currating and validating

compliance of delivered artefacts, and delivery of a
heterogeneous software environment

● testing and acceptance: a demonstrable benchmark for
good practice and compliance - automation

● security: tracking of core software dependency
compliance, with an automated way to upgrade, test and
rollout security patching without involving "everyone"

Regional Science Centres:

open source technologists

Kubernetes is Cloud Native

Kubernetes is the platform that all the other tooling sits on
or integrates with:

● CSI – storage interfaces
● CNI – network interfaces
● Containerd – run time
● Prometheus - monitoring
● Helm - deployment
● Linkerd – diagnostics
● Envoy – service proxy
● Harbor – container registry

And many more

open source technologists

K8s: Where does it sit in the platform landscape?

Between Platform
Services and Execution
Control

open source technologists

K8s: Architecture logical view

Many opportunities to
integrate and customise

open source technologists

SDLC: software life-cycle management

Minikube is the
starting point

open source technologists

SDLC: software life-cycle management

A process and technology that supports SAFe

open source technologists

PaaS - Engagement

Engagement is solved by portability – supplied by k8s

Portability problem:
● Devices
● Storage
● Compute
● Network
● Service primitives

Hardware considerations abstracted from the application

open source technologists

Kubernetes – not just an Orchestration Engine
 – it’s an API

Understanding:
• Deployment options
• Integration options
• PaaS

open source technologists

K8s: Integration Options

1) Kubectl plugins, official client libraries -
Keystone

2) API Server extension – ACL, edit
requests - Keystone

3) Custom Resources Definitions –
partner with (5)

4) Custom schedulers - rare

5) Custom Controllers – API aggregation,
pick up custom resources - KubeDB

6) Network extensions – Calico, Kuryr

7) Storage plugins – Cinder storage class,
and operator

open source technologists

Kubernetes: Resource Primitives

Applications can be deployed with:
• Application – Pod, Deployment
• Sets – ReplicaSets, StatefulSets, DaemonSets
• Schedule – Job, CronJob
• Network – Service, Endpoint, Ingress, NetworkPolicy
• Storage – StorageClass, PersistentVolumes

open source technologists

Kubernetes: Deployment Options

Applications can be deployed with:
• kubectl run ... - adhoc container execution
• Resource descriptors – application definition and

automation as code (including PodPreset templates)
• API Clients – write applications that manage or extend

k8s
• Helm – template the templates (charts), with a

templating language and configuration control
• Others (meta-tools): Ansible, Teraform, Draft(Azure),

Skaffold...
•

open source technologists

Scheduling

1) Deployment descriptor posted to API

2) Passes through authentication – webhook

3) Access control applied

4) Passes through Admission Control –
reformatted/decorated

5) Scheduler calculates placement – affinity/anit-affinity

6) Passed to Kubelet which assembles resources and boots
container

open source technologists

Operators -
Eg: KubeDB

Custom Resource Definitions
 + Operator

● KubeDB
● MPIJob
● Rook – ObjectStore (Ceph)

open source technologists

Heroku
Engine Yard
Acquia
AWS
Bitnami
Cloud Foundary
Digital Ocean
...

Replaced by EKS, AKS, GCP, OpenShift ...

Where’s your PaaS?

open source technologists

What does this mean?

● Platform Services are now abstract services – DB,
Storage, Vault, ElasticSearch, Prometheus ...
● SAP & CERN have turned it inside out with managing
OpenStack Platform Services from Kubernetes
● Metacontroller – rewrite objects and workflows with
scripting
● Kubernetes is eating the stack from Platform Services,
up to frameworks
● a DC/OS – resource management and scheduling
● a unifying abstraction layer
● MVP Execution Framework

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

