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Overview

● Cloud Native
● Kubernetes
● Science as a Service
● The SKA
● Where’s your PaaS?
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Cloud Native
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Cloud Native

Is the embodiment of modern software delivery practices
Supported by tools, frameworks, processes and platform 
interfaces.
These capabilities are the next evolution of Cloud 
Computing, raising the level of abstraction for all actors 
against the architecture from the hardware unit to the 
application component.
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Cloud Native advantages

Cloud Native exploits the advantages of the Cloud 
Computing delivery model:
● PaaS layered on top of IaaS
● CI/CD – fully automated build,test,deploy
● Modern DevOps – auto-scaling, monitoring feedback 

loop
● Software abstraction from platform compute, network, 

storage
● Portability across Cloud Services providers
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Cloud Native Software Delivery Life Cycle

Why Cloud Native SDLC? - cohesion for distributed project

● Codify standards - testing gates
● Code quality, consistency and assurance – CI/CD
● Automation – build AND rebuild (zero day)
● Portability of SDI as well as code
● Reference implementation – best practices, and 

exemplars
● Engagement – an open and collaborate system “Social 

Coding Platform”
● Integration with SRC, and other projects – the future 

platform
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SDLC: software life-cycle management

Cloud Native opportunities for automation:
Build, test, deploy, scale
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Science as a Service – why Cloud Native fits
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Delivering the SDP - SaaS

SDP is compelling Science as a Service use case with 
requirements like:
● 24x7 data capture and processing
● Limited range of processing pipelines
● Storage limitations
● In manufacturing terms - if visibilities are the primary 

product, then SDP data products are the secondary 
product that scientists create tertiary products from

● A distributed problem: Software Development and 
Service Delivery
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Cloud Native - SaaS

To realise Science as a Service:
● need a common set of standards for software 

development and deployment that will scale from the 
laptop to the super computer

● giving certain guarantees about:
● Re-usability
● Portability

This will enable processing to move seemlessly(ish) 
between facilities, limited only by bandwidth, storage, and 
processing capacity.
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Kubernetes – a unifying abstraction layer
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Kubernetes – provides standards

Impact on the actors:
● developers: a known and dependable working 

environment
● devops: a mechanism for currating and validating 

compliance of delivered artefacts, and delivery of a 
heterogeneous software environment

● testing and acceptance: a demonstrable benchmark for 
good practice and compliance - automation

● security: tracking of core software dependency 
compliance, with an automated way to upgrade, test and 
rollout security patching without involving "everyone"

Regional Science Centres:
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Kubernetes is Cloud Native

Kubernetes is the platform that all the other tooling sits on 
or integrates with:

● CSI – storage interfaces
● CNI – network interfaces
● Containerd – run time
● Prometheus - monitoring
● Helm - deployment
● Linkerd – diagnostics
● Envoy – service proxy
● Harbor – container registry

And many more 
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K8s: Where does it sit in the platform landscape?

Between Platform 
Services and Execution 
Control
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K8s: Architecture logical view

Many opportunities to 
integrate and customise
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SDLC: software life-cycle management

Minikube is the 
starting point
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SDLC: software life-cycle management

A process and technology that supports SAFe
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PaaS - Engagement

Engagement is solved by portability – supplied by k8s

Portability problem:
● Devices
● Storage
● Compute
● Network
● Service primitives

Hardware considerations abstracted from the application
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Kubernetes – not just an Orchestration Engine 
                      – it’s an API

Understanding:
• Deployment options
• Integration options
• PaaS
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K8s: Integration Options

1) Kubectl plugins, official client libraries - 
Keystone

2) API Server extension – ACL, edit 
requests - Keystone

3) Custom Resources Definitions – 
partner with (5)

4) Custom schedulers - rare

5) Custom Controllers –  API aggregation, 
pick up custom resources - KubeDB

6) Network extensions – Calico, Kuryr

7) Storage plugins – Cinder storage class, 
and operator
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Kubernetes: Resource Primitives

Applications can be deployed with:
• Application – Pod, Deployment
• Sets – ReplicaSets, StatefulSets, DaemonSets
• Schedule – Job, CronJob
• Network – Service, Endpoint, Ingress, NetworkPolicy
• Storage – StorageClass, PersistentVolumes
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Kubernetes: Deployment Options

Applications can be deployed with:
• kubectl run ... - adhoc container execution
• Resource descriptors – application definition and 

automation as code (including PodPreset templates)
• API Clients – write applications that manage or extend 

k8s
• Helm – template the templates (charts), with a 

templating language and configuration control
• Others (meta-tools): Ansible, Teraform, Draft(Azure), 

Skaffold...
•
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Scheduling

1) Deployment descriptor posted to API

2) Passes through authentication – webhook

3) Access control applied

4) Passes through Admission Control – 
reformatted/decorated

5) Scheduler calculates placement – affinity/anit-affinity

6) Passed to Kubelet which assembles resources and boots 
container
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Operators -
Eg: KubeDB

Custom Resource Definitions
 + Operator

● KubeDB
● MPIJob
● Rook – ObjectStore (Ceph)
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Heroku
Engine Yard
Acquia
AWS
Bitnami
Cloud Foundary
Digital Ocean
...

Replaced by EKS, AKS, GCP, OpenShift ...

Where’s your PaaS?
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What does this mean?

● Platform Services are now abstract services – DB, 
Storage, Vault, ElasticSearch, Prometheus ...
● SAP & CERN have turned it inside out with managing 
OpenStack Platform Services from Kubernetes
● Metacontroller – rewrite objects and workflows with 
scripting
● Kubernetes is eating the stack from Platform Services, 
up to frameworks
● a DC/OS – resource management and scheduling
● a unifying abstraction layer
● MVP Execution Framework
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