

ASIC FOR SKA - SKASIC

Presented by: Rezaul Hasan, Ph.D. (UCLA, USA), Director

Center for Research in Analog and VLSI microsystem dEsign (CRAVE), School of Engineering and Advanced Technology, Massey University Auckland 0632, New Zealand

Massey University Overview

- Massey University is the 2nd largest university in New Zealand
- The School of Engineering and Advanced Technology (including Computer Science) have over 70 academic staff, along with over 100 Ph.D. students.
- High PBRF score in Engineering and Technology
- A leader in Electronic and Computer Engineering Research

*Center for Research in Analog & VLSI microsystem dEsign (CRAVE) *HASAN VLSI GROUP

- *Only Center for Integrated Circuit/VLSI/ASIC design in New Zealand
- *Nearly 100 conference and 60 Journal publications in IC/VLSI/ASIC design
- *Microchip design experience using Cadence, Mentor Graphics, Synopsys, Tanner Tools
- *Chip Fabrication experience through IBM, TSMC, Agilent and AMS silicon foundries
- *Experience in Analog, Digital, Radio-Frequency, Mixed-Signal, ASIC, SOC, MEMS. Node-size down to 28 nm CMOS

ASIC DESIGN

• IC Design for a Specific Application

PURPOSE

- Reduce power dissipation
- Reduce hardware cost and size
- Achieve higher processing speed
- Reduce memory and bus/bandwidth bottle-necks
- Improve overall system reliability

ASIC DESIGN

INFRASTRUCTURE REQUIREMENT

- Foundry Access often through third parties, Global Foundries (mostly IBM processes), ST Microelectronics, TSMC often requiring 3-tier NDAs
- Design Tool Access Cadence, Mentor Graphics, Synopsys NDAs
- Workforce trained in circuit and system design
- Experience in packaging design and/or package selection
- •Experience in Fab design submission and prototype testing
- Micro-probing using probe pads and Testing Facilities

ASIC DESIGN

ASIC DESIGN METHODOLOGY

- Architecture Development and functional/VHDL simulation
- Standard Cell/ Full Custom Design (often cell library including SRAM, DRAM, I/O available from foundry)
- Synthesis from RTL using standard cells/custom cells
- SPR (Placement and routing) to optimize chip-size including power supply and global clock routing
- Logic verification and Timing analysis (critical path analysis)
- Calibre DRC, Parasitic extraction and LVS (layout vs. schematic)

Packaging design/selection

ASIC DESIGN

ASIC for SKA -SKASIC

- Various components in CSP and DISH work packages
- For example, Cross-correlator for CSP and Beam-former for DISH
- Has been investigated for DISH TDBF PDR

 Is being investigated for Wavefront array correlator for CSP and Pulsar search

•Primary goal – drastic reduction of power dissipation (reduce running cost)

• Secondary goal – low NRE and unit production/manufacturing cost

ASIC DESIGN

ASIC for TDBF

- 28nm GF SLP, 28nm GF HPP or 28nm ST Microelectronics FDSOI CMOS
- ARM standard cell library/ ST microelectronics cell library
- 15 G/s SERDES IP
- Power: 20W/chip (@ 1.2 GHz)
- size: 11mm x 11mm
- cost: \$230 @ 10K quantity
- •Package: Flip-chip BGA

ASIC DESIGN compared to FPGA

- Unlike FPGA ASIC design requires considerable design platform, infrastructure and FAB connections.
- ASIC unit cost is usually cheaper for higher volume, upwards 100K volume
- For the same process technology ASIC will almost certainly have lower running cost
- ASIC will in most cases ease I/O as compared to FPGA
- Operating speed supported is likely to be higher compare to FPGA
- ASIC has high NRE compared to FPGA, but lower NRE in an university VLSI design environment

Thank You!