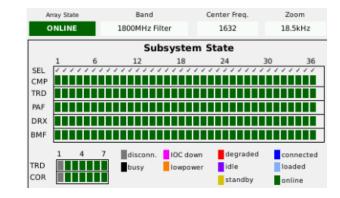


ASKAP early science and pilot surveys

An update on current activity and future plans

Aidan Hotan | ASKAP lead scientist 12 February 2019

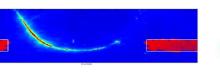
CSIRO ASTRONOMY AND SPACE SCIENCE www.csiro.au

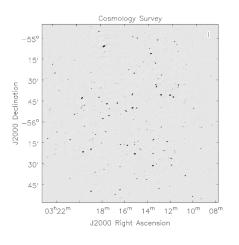

Australian SKA Pathfinder (ASKAP)

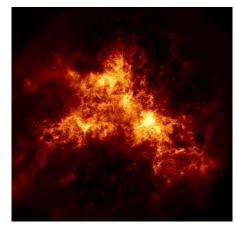
- Located within the Murchison Radio-astronomy Observatory
- Prime focus phased array feeds
 - 36 beams, 30 square degree FoV
- 36 antennas, 12m diameter
 - 3-axis mount to track offset beams
- 288 MHz bandwidth
 - 700 to 1800 MHz tuning range
- 15552 channels
 - 18.5 to 1.1 kHz resolution

Telescope commissioning

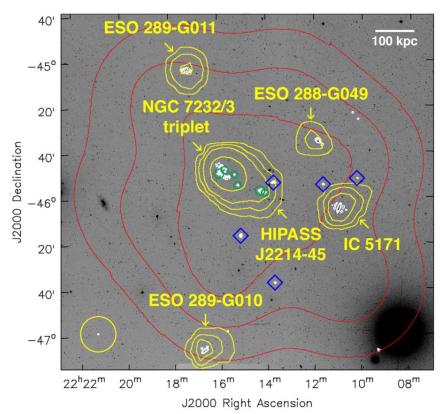
- Synchronisation of all electronics last week
- 28 out of 36 antennas fully integrated
 - Planning to complete all measurements this month
 - Gearbox replacement on two antennas this week
- ASKAP opened in October 2012
 - Expect major design revisions to follow from field experience
 - Allow sufficient time to test prototypes under real conditions
- Many long-term improvements possible during operations:
 - Clean-up of alarm system, reliability improvements, beamforming research, imaging software and pipeline improvements, split frequency modes, etc.

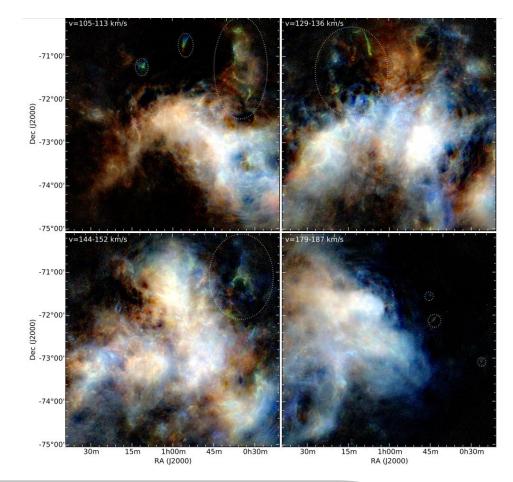

ASKAP science goal summary


- Understanding galaxies, their environments and their evolution through large scale radio continuum and spectral line surveys
 - EMU: Continuum survey, millions of new starburst and AGN detections
 - WALLABY: Neutral Hydrogen survey, studying local group dynamics
- Polarisation and cosmic magnetism
- HI absorption, stacking, galactic HI
- Transients and variable sources
- Explore the unknown by opening new parameter space
- Pioneer the emerging field of fast transient detection and localisation


Highlights from early science

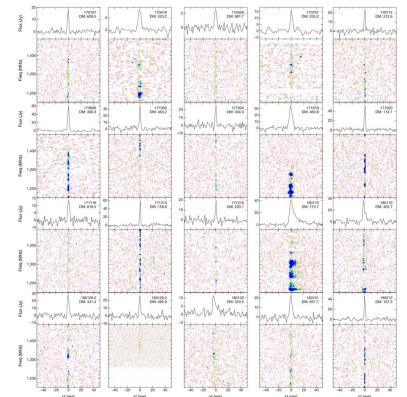
- WALLABY ES papers I & II
 - NGC 7232 data on CASDA soon
- Continuum cosmology survey
 - Data on CASDA now
- Small Magellanic Cloud in HI
 - Improved sensitivity and resolution
- 20 new Fast Radio Bursts
 - Localisation efforts underway




WALLABY Early Science

- Lee-Waddell et al. 2019
- 12 antenna array
- Region around NGC 7232
 - Yellow = HIPASS
 - White = ASKAP
 - Background = DSS
 - Blue triangles = new detections with stellar counterparts

Small Magellanic Cloud


- McClure-Griffiths et. al. 2018
- Highest ever resolution and sensitivity image of the SMC
 - Observational evidence for strong atomic hydrogen outflows
- New features observed
 - comet-shaped head-tail clouds
 - enormous looping HI filaments
 - compact high-velocity clouds
- The whole SMC fits in one field!

20 new Fast Radio Bursts

- Shannon et. al. 2018
- Fast filter-bank download and fly's eye
- Dispersion brightness relation
 - FRBs have cosmological origin
- Next step is localisation
 - Using triggered voltage capture
 - Can run in commensal mode
 - Goal is to identify FRB host galaxies

Sequence of events in 2019

- Major control system feature releases complete
 - Fringe tracking per beam, frequency zoom modes
- Final array release with 36 antennas
- Publication of specifications and performance metrics
- Request for detailed pilot survey strategies
- Full-scale test observations to inform survey strategies
- Rapid ASKAP Continuum Survey (RACS)
- Commencement of pilot survey observations
- Transition to full survey operations over time

ASKAP pilot survey plan

- ASKAP was designed to be a survey telescope, however:
 - Surveys are usually done by mature, well-understood instruments
 - ASKAP's operational model is new to the Southern radio community
 - 5-year observing plans need to be tested and verified in advance
- Pilot surveys will assess proposed modes and strategies
 - Need to focus on technical validation before science
 - Limited time allocation of 100 hours per team for pilot surveys
 - Community involvement in data processing is critical to success
 - Service observing model shifts traditional responsibilities
 - <u>https://confluence.csiro.au/display/askapsst/Pilot+Surveys</u>

Rapid ASKAP Continuum Survey

- ASKAP's most advanced feature is its wide field of view
 - Excellent UV coverage makes snapshot imaging viable
- Can achieve NVSS sensitivity with 10-minute observations
 - With 30 square degree FoV, can survey the entire sky in a week
 - Survey science teams all have much deeper imaging in mind
- Rapid survey mode will be run as an observatory project
 - Should provide a greatly improved Southern sky model
 - Repeated rapid surveys will study the dynamic universe

Community engagement with commissioning

- ASKAP's large science teams make communication challenging
 - Need feedback from experts, but without inundating developers
- The ASKAP commissioning team (ACES)
 - Formed from operations, engineering and experts in each science field
 - First priority is the telescope itself solving issues that cross team boundaries
 - Help determine engineering priorities for bug fixes and future development
 - Provide a single point of contact to large science teams
 - Work closely with operators to develop processing strategies
- Centralised data processing requires tight resource control
 - Sharing disk space, CPU time, etc. has been a real challenge

Image processing strategy

- The original ASKAP plan called for automated, real-time processing
 - Projected to be the only way to achieve 100% duty cycle
 - Relies upon real-time calibration using a sky model
 - Assumes that processing parameters are known in advance
 - Completely isolates astronomers from calibration and imaging
 - Assumes data are perfect (simulations do not adequately test software!)
- Experience with early science prompted a shift in priorities
 - Real-time processing is extremely restrictive
 - Makes parameter tuning and fault investigation nearly impossible
 - Lack of framework meant pipeline scripts arose out of necessity
 - Should have designed a flexible batch processing scheme from the start
 - High duty cycle is useless if the image quality is poor!

CSIRO ASKAP Science Data Archive

- ASKAP will produce roughly 5 PB of *images* per year
 - These, and associated catalogues, will be stored online
- The CSIRO ASKAP Science Data Archive (CASDA):
 - Stores quality-controlled data from each scheduling block
 - Stores value-added products created by external science teams
 - Has a Virtual Observatory interface to facilitate access
 - Is intended to be the primary interface to the telescope
- NGC7232 and Cosmology data now available
- https://data.csiro.au

Summary

- ASKAP will be fully operational this year
 - Many lessons learnt during commissioning
 - Only the beginning, many improvements possible
- Early science observations demonstrate exciting potential
- Full-scale pilot surveys commencing in the next few months
- Precursor communities are the SKA regional centre prototype
 - Building on experience helps reduce risk

Thank you

www.csiro.au

