Abbott et al. (2016)
There are ten thousand other tiny things, and I really mean ten thousand. And every single one needs to be working correctly so that nothing interferes with the signal.” - Rainer Weiss

- minuscule seismic tremors
- the wind in Hanford
- the water near Livingston
- fluctuations in the power grid
- distant lightning storms
- passing cars
- airplanes
- wolves
...
Distortions in spacetime alter pulsar phase
Gravitational Wave Detection

• Sazhin (1978) and Detweiler (1979)
 – single pulsar-Earth baseline
 – single SMBH binary system

• Hellings & Downs (1983)
 – quadrupolar correlations between pulsars
 – stochastic background of gravitational waves
Pulsar Timing Array

Hellings & Downs (1983)
Gravitational Wave Background

• Cosmological
 – energetic processes in early Universe
 (e.g. inflation)

• Astrophysical
 – population of SMBH binaries
 – Sesana, Vecchio & Colacino (2008)
Pulsar Timing Arrays

- **PPTA**: Parkes Pulsar Timing Array
- **NANOGrav**: North American Nanohertz Observatory
- **EPTA**: European Pulsar Timing Array
- **IPTA**: International Pulsar Timing Array
 - consortium of consortia (2008)
Gravitational Wave Detection is Challenging

- **Pulsar intrinsic**
 - Stochastic impulsive emission (white noise)
 - Spin irregularity (red noise)

- **Interstellar medium**
 - Variations in electron density along line of sight (red)
 - Multipath propagation (scattering)

- **Within solar system**
 - Errors in the solar system ephemeris (dipolar)
 - Errors in the definition of time on Earth (monopolar)
Gravitational Wave Detection is Challenging

• Pulsar intrinsic
 – Stochastic impulsive emission (white noise)
 – Spin irregularity (red noise)

• Interstellar medium
 – Variations in electron density along line of sight (red)
 – Multipath propagation (scattering)

• Within solar system
 – Errors in the solar system ephemeris (dipolar)
 – Errors in the definition of time on Earth (monopolar)
Habibi et al. (2011)
Macquart et al. (2013)
Lazio et al. (2004)
Lorimer & Kramer (2004)
Hemberger & Stinebring (2008)
Stinebring et al. (2001)
Delay - Doppler

\[F_v = \frac{D_s \theta^2}{2c \beta} \]

\[F_t = \frac{1}{\lambda \beta} \theta \cdot u_\perp \]

Walker et al. (2004)
Conventional (Pulsar) Spectroscopy

- Dynamic spectrum on-pulse less off-pulse
- Time span = $P/2$
- $\Delta v_{\text{min}} = 2/P$
Cyclic Spectroscopy

\[S_x(\nu; \alpha) = E \{ X(\nu + \alpha/2)X^*(\nu - \alpha/2) \} \]

- \(\alpha = k/P \) = harmonics of spin frequency
- \(\nu = \) radio frequency
- \(X(\nu+\alpha/2) = \) RF spectrum “mixed” with harmonic of spin frequency
- upper and lower “sidebands” cross-multiplied
Demorest (2011)
Transfer

\[y(t) = h(t) \ast x(t) \]

\[Y(\nu) = H(\nu)X(\nu) \]

\[S_y(\nu; \alpha) = H(\nu + \alpha/2)H^*(\nu - \alpha/2)S_x(\nu; \alpha) \]
Transfer

\[y(t) = h(t) \ast x(t) \]

\[Y(\nu) = H(\nu)X(\nu) \]

\[S_y(\nu; \alpha) = H(\nu + \alpha/2)H^*(\nu - \alpha/2)S_x(\nu; \alpha) \]
Hemberger & Stinebring (2008)
Degeneracy

\[Q(\nu) = \exp[i(\tau \nu + \phi) + \rho] \]

\[S_x(\alpha) \rightarrow S_x(\alpha) \exp[-i\tau \alpha - 2\rho] \]

- \(\exp(\rho) = \) overall scale
- \(\phi = \) absolute phase
- \(\tau = \) delay (phase gradient in Fourier domain)
Brisken et al. (2010)
Delay - Doppler

\[F_v = \frac{D_s \theta^2}{2c \beta} \]

\[F_t = \frac{1}{\lambda \beta} \theta \cdot v_\perp \]

Walker et al. (2004)
The scintillation velocity was determined using the following equation:

\[V = \frac{f}{f_{\text{ISS}}} \cos i \]

where \(f \) is the scintillation bandwidth in megahertz, \(f_{\text{ISS}} \) is the scintillation timescale in seconds, and \(i \) is the inclination angle of the system. Therefore, we require estimates of the pulsar's velocity as a function of five free parameters: orbit, pulsar, and neutron star. We require estimates of the pulsar's velocity as a function of five free parameters: orbit, pulsar, and neutron star. The structure of the binary indicates an unreasonably low neutron star mass. The latter is accurately determined by pulse timing and allows us to construct a model that describes the observed scintillation velocity into a scaling parameter within the model.
Future Work

• Break geometric degeneracies
 – pulsar orbital phase
 – Earth’s orbital phase (day of year)

• Holographic image of scattering screen
 – test / modify theories of physical origin

• Predict absolute propagation delays
 – increase PTA sensitivity to GWB!