Cramming CMACs into DSPs

Norbert Abel, Will Kamp
High Performance Computing Research Lab
Auckland University of Technology, New Zealand

Gianni Comoretto
Arcetri Astrophysical Observatory, Italy
15 th February 2019 - C4SKA @ AUT

SKA1 - Low

512 stations
(dual polarisation)

256×40 Gbps optical fibre links back to the Central Signal Processor (CSP)

15th February 2019 - C4SKA @ AUT

CSP - Central Signal Processor

Cross-multiply every station with every other station: $\mathrm{O}\left(\mathrm{N}^{2}\right)$ operations.
Where N = 2*512 = 1024 for Low.
Then accumulate to "beat down the noise" by the Central Limit Theorem.

Largely implemented with FPGA clusters: 288 Xilinx Ultrascale+ VU37P

SKA.Low = 288 FPGA x 1056CMACunits @ 533 MHz

Complex Multiplication

Cartesian Multiplication:

```
z = x
    =(a+ib) ) (c + id)
    = (a\cdotc-b
4 Multiplies, 2 Additions/Subtractions
Karatsuba (Gaussian) Multiplication:
\(\mathrm{K}_{1}=\mathrm{a} \cdot \mathrm{c}\)
\(\mathrm{K}_{2}=\mathrm{b} \cdot \mathrm{d}\)
\(K_{3}=(a+b) \cdot(c+d)=(a \cdot c+b \cdot c+a \cdot d+b \cdot d)\)
\(\mathrm{z}=\left(\mathrm{K}_{1}-\mathrm{K}_{2}\right)+\mathrm{i}\left(\mathrm{K}_{3}-\mathrm{K}_{1}-\mathrm{K}_{2}\right)\)
3 Multiplies, 5 Additions/Subtractions
```


Complex Multiplication

Cartesian Multiplication:

$$
\begin{aligned}
z & =x \cdot y \\
& =(a+i b) \cdot(c+i d) \\
& =(a \cdot c-b \cdot d)+i(a \cdot d+b \cdot c)
\end{aligned}
$$

4 Multiplies, 2 Additions/Subtractions

Karatsuba (Gaussian) Multiplication:
$\mathrm{K}_{1}=\mathrm{a} \cdot \mathrm{c}$
$\mathrm{K}_{2}=\mathrm{b} \cdot \mathrm{d}$
$K_{3}=(a+b) \cdot(c+d)=(a \cdot c+b \cdot c+a \cdot d+b \cdot d)$
$\mathrm{z}=\left(\mathrm{K}_{1}-\mathrm{K}_{2}\right)+\mathrm{i}\left(\mathrm{K}_{3}-\mathrm{K}_{1}-\mathrm{K}_{2}\right)$
3 Multiplies, 5 Additions/Subtractions

$$
\begin{aligned}
& \text { Xilinx Ultrascale }+ \\
& \text { One } 18 \times 27 \mathrm{~b} \text { signed multiply. } \\
& \Rightarrow 3168 \text { DSPs }
\end{aligned}
$$

Complex Multiplication

Cartesian Multiplication:

$$
\begin{aligned}
z & =x \cdot y \\
& =(a+i b) \cdot(c+i d) \\
& =(a \cdot c-b \cdot d)+i(a \cdot d+b \cdot c)
\end{aligned}
$$

4 Multiplies, 2 Additions/Subtractions

Karatsuba (Gaussian) Multiplication:
$\mathrm{K}_{1}=\mathrm{a} \cdot \mathrm{c}$
$\mathrm{K}_{2}=\mathrm{b} \cdot \mathrm{d}$
$K_{3}=(a+b) \cdot(c+d)=(a \cdot c+b \cdot c+a \cdot d+b \cdot d)$
$\mathrm{z}=\left(\mathrm{K}_{1}-\mathrm{K}_{2}\right)+\mathrm{i}\left(\mathrm{K}_{3}-\mathrm{K}_{1}-\mathrm{K}_{2}\right)$
3 Multiplies, 5 Additions/Subtractions

$$
\begin{aligned}
& \text { Xilinx Ultrascale }+ \\
& \text { One } 18 \times 27 \mathrm{~b} \text { signed multiply. } \\
& \text { => } 3168 \text { DSPs }
\end{aligned}
$$

Actually, we only need a $8 \mathrm{~b} \cdot 8 \mathrm{~b}$ multiplier!

The cramming begins...

$$
\begin{aligned}
& x=a+i b=>\quad x^{\prime}=a+2^{w} b \\
& y=c+i d \quad y^{\prime}=c+2^{2} d \\
& z^{\prime}=x^{\prime} y^{\prime} \\
& z^{\prime}=\left(a+2^{w} b\right) \cdot\left(c+2^{w} d\right) \\
& z^{\prime}=2^{w} b \cdot d+2^{w} b \cdot c+2^{w w} a \cdot d+a c \\
& z^{\prime}=2^{w} b \cdot d+2^{w}(b \cdot c+a d)+a c
\end{aligned}
$$

b	0	0
0	0	a
b	0	a

z'=
b•d
$a \cdot c$
$z=b d-a \cdot c+i(b \cdot c+a d)$

Unsigned Complex Multiplication) erentie

Signed Complex Multiplication

Signed Complex Multiplication

Simulation for w=3, therefore a, b, c, d in range -3 to +3 .

It works! Except for the one case where $a=b=c=d=2^{w}$

- but the SKA uses -2^{w} as NaN anyway

Ultrascale+ DSPs

Xilinx Ultrascale+
One $18 x 27$ b signed multiply.

Ultrascale+ DSPs

Ultrascale+ DSPs

$$
z=(a+i b) \cdot(c+i d)=(a c-b d)+i(a d+b c)
$$

Ultrascale+ DSPs

$$
z=(a+i b) \cdot(c+i d)=(a c-b d)+i(a d+b c)
$$

Results

TABLE II

Implementation Results for Xilinx UltraScale +

Style	Width	LUTs	FFs	DSPs	Fmax
optimised	9-bit	86	54	2	640 MHz
inferred	9-bit	99	163	2	450 MHz

Results: $\mathrm{M}=19$, f=384 MHz

Results: $\mathrm{M}=18$, f=440 MHz

Results: $\mathrm{M}=17, \mathrm{f}=505 \mathrm{MHz}$

Results: $\mathrm{M}=16, \mathrm{f}=534 \mathrm{MHz}$

Results

Questions / Discussion?
 Thank-you!

