Testing Inflation with High Precision Measurements of the Primordial Power Spectrum

Richard Easther (U of Auckland) + Nathan Musoke
Precision cosmology

We are the first generation of human beings to have accurately measured the global properties of our universe...
...and build an understanding of its global history
Dark Ages → CMB → Inflation → Nucleosynthesis

Story of the primordial universe | WMAP/NASA
Two Questions
One: Why is the universe so smooth?
Two: Why isn’t it completely smooth?
Universe evolves; current form is a set by its earlier state...
So what did the universe look like, right after the Big Bang?
A baby, with a high level of fine-tuning…
Problems solved by inflation

• Period of *accelerated* expansion, just after the big bang
 • In fact, the universe could be “born” inflating
 • Universe grows (at least) 10^{30} times larger during inflation

• Smooths out any initial bumps and lumps
 • Generates ripples via quantum fluctuations...

• No-one knows why inflation happens

• “Flatness”
But why?

- Why does inflation happen?
 - Needs matter with negative pressure…
 - Relies on high energy physics
 - But not *known* high energy physics
- Problem is not finding mechanisms that could drive inflation
 - Problem is also that we have found tooooo many
All happy families are alike; each unhappy family is unhappy in its own way.
All smooth universes are alike; each lumpy universe is lumpy in its own way.
Measure the power spectrum...

- Look at perturbations
 - Via microwave background, galaxy clustering, Lyman-
 Baryon acoustic oscillations
 - High redshift 21cm
- Must also pin down other key variables (dark matter, dark energy, Hubble constant, reionization history)
- And back out evolution to get primordial spectrum
Take A Fourier Transform…

- Regular spatial transform for 3D structures
- Spherical harmonics for the CMB
- Three variables
 - Amplitude (almost always a free parameter)
 - Spectral index — how does the amplitude change with wavelength
 - Running — how does spectral index change with wavelength
- Plus gravitational waves (may be effectively zero)
Inflationary Model Space

Planck, 2015
Generic Inflationary Model

- 4th order polynomial potential
 - Bird, Peiris & RE arXiv:0807.3745
 - [And that’s just me]

- But (so far as I know) no-one has catalogued all possible inflationary behaviours
The Potential

- Original form
 \[V(\phi) = \frac{m^2}{2} \phi^2 - \frac{g}{3} \phi^3 + \frac{\lambda}{4} \phi^4 \]

- Complex degeneracies between \(m, g \) and \(\lambda \)

- However, choose \(m^2 = \lambda M^2, \ g=2\lambda M \Delta \)

\[V(\phi) = \lambda \left(\frac{M^2}{2} \phi^2 - \frac{2}{3} \Delta M \phi^3 + \frac{1}{4} \phi^4 \right) \]
Specify “Physical” Priors

- Details in paper (and largely a matter of taste)
 - But this formulation gives “orthogonal” parameters
 - Location of plateau; minimal $V’$, overall scale...
- Compare to uniform distributions for n_s, r and α_s
 - Bayesian network; view M and Δ as hyperparameters
- cf Price, Peiris, Frazer & RE arXiv:1511.00029
- Inflationary model selection problem (to do)
Spectral index, derived prior
Tensor: scalar ratio derived prior
Spectral running derived prior
Joint Distributions…

- Strong covariance between n_s, r and α_s
 - But: not all combinations are possible
- Rule of thumb: given measured n_s, one of r and α_s above "observable" threshold
 - ~ 0.001 for either parameter (??)
- Possible to rule out all these models…
 - Needs high redshift 21cm? Maaaaaybe CMB
Possible future bounds ($r < 0.001$, $n_s = 0.96 \pm 0.006$, $\alpha_s = 0.0 \pm 0.001$)

Allowed regions
n_s: red, r: blue, α_s: green
Conclusions…

- Can describe a huge catalog of inflationary models via a single potential

- Possible (but futuristic) observations could rule out the full parameter volume for this scenario

- Traction from very high z / very low frequency 21cm

- Need a long “lever arm” in frequency to resolve the running

- Wait and see…