

From Science Aims to building a telescope

Nicolas Pradel

Auckland

09/02/2017

Introduction

• From Science Aims to Telescope Design

• From Telescope Design to Computing Needs

• From Computing Needs to Computing Design

- Try to tell a story
- A story about Science
- A story about how we can answer some very important questions
- A story about how we can build an instrument to answer those questions
- A story about how SKA will be this instrument
- A story about how important is our work

FROM SCIENCE AIMS TO TELESCOPE DESIGN

- Science cases:
 - Probing the Dark Ages and the Epoch of Reionization (tracking changes in Universe as first stars and galaxies formed)
 - Strong Field Tests of Gravity using Pulsars and Black Holes (high precision pulsar timing observations to test General Relativity)
 - Galaxy Evolution, Cosmology, and Dark Energy (track how galaxies accumulate gas and test properties of dark energy)
 - The Origin and Evolution of Cosmic Magnetism (track how cosmic magnetism has been generated)
 - The Cradle of Life (search for orbiting disks around stellar nurseries, prebiotic molecules)

- No instrument requirement so far
- How do we study these Science Aims?
 - Epoch of Reionization (EoR): HI at z<25 and very high SNR
 - Strong gravity field test (pulsar): NS-BH and BH-BH
 - Galaxy evolution: HI at z<6 or thermal at z>1
 - Cosmology and Dark Matter: >5° FoV deep spectral statistics, nHz gravitational waves
 - Cosmic Magnetism: Faraday screen at galactic scale
 - Cradle of Life: SETI + "earth" finding

- How to we observe all of this?
- Each field has a vector that can be observed, or a specific technic to analyse this vector
 - Epoch of Reionization (EoR): very high sensitivity of radio signals at ~100 MHz
 - Strong gravity field test (pulsar): precise time pulse profile
 - Galaxy evolution: high resolution imaging at 0.7—10GHz radio signals
 - Cosmology and Dark Matter: Wide-field imaging with very high sensitivity (µJy level)
 - Cosmic Magnetism: Full polarisation for radio signals at 0.7—10 GHz
 - Cradle of Life: Transient detection, <60 MHz planet emission, amino acid emission line

- So, what do we have so far?
- Obviously, it is a radio-telescope
- Band of observations is covering 50 MHz to ~10GHz
 - Too spread for a single receiver technology
- High angular resolution imaging means interferometer
 But wide field means small elements
- Small antennae and very high sensitivity imply
 - A lot of receiver elements
 - Either cooled receivers (cm- λ) or a LOT of them (m- λ)
 - High bandwidth
- Accurate pulse profile imply high spectral/time resolution

- What is the telescope design we got from Science Cases?
- One, in fact at least two, radio-interferometers
 - One for cm wavelengths
 - One for m wavelengths
- Large number of quite small antennae
 - Very large number of baselines
- Large bandwidth with lot of spectral channels
 - Very large data rate
 - State-of-art ADC and data links

FROM TELESCOPE DESIGN TO COMPUTING NEEDS

- So we have a lot of antennae, that produce a lot of data each
- What do we do with them?
 - 1. As astronomical signals are well below the ambient noise, we need to extract the sky signal
 - 2. Once the sky signal is isolated, we need to built data that can be analysed
 - Spectrum
 - Pulse profile
 - Imaging
 - •

- So we have a lot of antennae, that produce a lot of data each
- What do we do with them?
 - As astronomical signals are well below the
 - ambient noise, we need to extract the sky signal
 - Once the sky signal is isolated, we need to built data that can be analysed
 - Spectrum
 - Pulse profile
 - Imaging

From Telescope Design to Computing Needs

- All interferometers need a correlator (Central Signal Processing consortium for SKA)
 - Gather all the signals (voltages) from all the stations
 - Use geometric time delay model to synchronise the signal for a given target direction
 - Multiply the signal by pair of stations
 - Accumulate this multiplication
 - Do this in the frequency domain
 - The result for imaging is a visibility (complex function)

From Telescope Design to Computing Needs

- How does this translate in term of Computing?
 - 160 GB/s per station (hundreds of them)
 - FFT all of them (N.log(N))
 - Auto and Cross multiply ((number of stations)²)
 - In real time
 - Produce 80 Tb/s output data
 - +"details" (RIF mitigation, flag data, polarisation,...)

From visibilities, Signal Data Processor build astronomical data (images)

- Visibilities are complex sine waves sampled at one point
- Must use Fourier Transform to obtain image (FFT)
- Need regular spacing > Gridding
- Kernel functions smooth the visibility over the grid
- Need several "major" cycles that include deconvolution and inverse FT

From visibilities, Signal Data Processor build astronomical data (images)

- Kernel updates scale as N_{kern}²
- Gridding scale as N_{vis} . N_{kern}^2
- FFT scale as N_{pix}.log(N_{pix})
- Need several major cycles with iFFT (scale as N_{pix}.log(N_{pix}))
- Additional calibration tasks increase this by similar factors

FROM COMPUTING NEEDS TO COMPUTING DESIGN

- For both CSP and SDP, base algorithms are well known and the needed operations are documented
- However, brute force applications of these algorithm break other SKA constraints:
 - Power
 - Budget
- Need to optimise the way these operations are done
- Need to circumvent, parallelize and distribute wherever it is possible to do so
- Need to search for computing saving possibilities

From Computing Needs to Computing Design

- At almost every step within the data flow, possibilities exist
 - Efficient parallelization of FFT and crossmultiplication in the correlator
 - Possible bit precision limitation after CSP
 - Distribution of reduced grid kernels (faceting, snapshots, baseline binning,...)
 - "Smart" calibration strategies
 - Possible bit precision limitation in imaging tasks

- As SKA budget (in € and in W) is limited, these possibilities must be studied
- Impacts of various computing strategies must be evaluated and compared
- Need of tools to evaluate these impacts to provide answer to SKA Computing design questions
- We need to be able to model, from end to end, the data flow and the computing operations of SKA

Summary

- SKA science cases are unique in their requirements
- They translate into huge technical and building requirements for the telescope
- The number of stations, the size of the data produced and the accuracy of the data processing infer huge computing power
- Various data processing algorithms and/or computing strategies must be studied
- Need of end-to-end signal path model for SKA