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Who am I?
• New-ish AUT Lecturer
• 0.2 FTE on SKA under the HPC Research Lab
• Involved in software development 
• Prototyping in GPU computing, many-core 

architectures and low-power parallelization. 
• Document prototyping test reports during the 

course of the project.



Fast Fourier Transforms (FFT)
• Main algorithm I am looking at is FFT
• FFT is an efficient way to do Fourier transforms 

which convert a signal between its original 
domain (often time or space) and its 
representation in the frequency domain.

• Used in the Correlator where digitized data from 
the radio telescope is collected and processed 
using FFT. Also used in Pulsar Searching and the 
Imaging Pipeline.
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Decimation In 
Frequency FFT



6 Step FFT 
• For very large FFT’s, Can be more efficient to 

break it up using a “6 Step” FFT
• For an N size FFT we can break it up into two sets 

of m x n number of FFTs. Eg for a 16 point FFT we 
can beak into a 4x4 or 2 x 8.

• Most of the testing in this work is done on 218
point complex FFT.  So 6 step done with 512x512 
point FFTs

• We can choose the value of m and n based on 
hardware architecture (eg amount of memory on 
processing core cache).



1. Arrange data (Group same colours together).
2. Perform m lots of n point FFTs 
3. Rearrange data (corner turn,gsame colours 

together).
4. Multiply all values by twiddle correction
5. Perform n lots of m point FFTs 
6. Rearrange data back (corner turn)

FFT 
Butterflies 

FFT 
Butterflies 



Low Power Devices Being Tested

• Adapteva Epiphany Parallella
• NVIDIA Jetson TK1
• Kalray MPPA



Adaptiva Epiphany Parallella
• Company founded via a Kick 

Starter campaign
• Dual Core ARM A9 Processor
• Epiphany coprocessor with 

16 high performance RISC 
cores

• 1 GB RAM
• < 5 watt power consumption
• They have a 64 core product 

and developing a board with 
4096 RISC cores 



NVIDIA Jetson TK1

• Tegra K1 SOC 
• NVIDIA Kepler GPU with 
192 CUDA cores 
• NVIDIA quad-core ARM 
Cortex-A15 CPU + low 
power companion core 

• 2 GB RAM 
• Power consumption: 11 
watts



Kalray MPPA
• Massively Parallel 

Processing Array.
• 5-10 watts power 

consumption.
• 256 cores.
• Work undertaken by 

Julien and Julien



Epiphany FFT
• Work in Progress
• Promising Architecture, Company claims to be #1 in 

terms of throughput / power consumption
• Claims 5 GigaFLOPS per watt on 16 core and 50 

GigaFLOPS per watt on 64 core.
• Had several problems with the OS, lots of bugs!!
• Development environment and build tool problems.
• Very bad documentation.
• Tried several languages and libraries for FFT 

development on Parallella board including Epiphany 
SDK, Open CL, E-Python and Epiphany BSP (Bulk 
Synchronous Parallel) – works well…… so far



Multicore Parallelization



How things are implemented on GPU

• GPU’s have many more cores to do computations in 
parallel.

• Great for mathematical computations
• Not good for code branching.
• GPU can load in blocks of data to onboard memory. 

However for large FFT’s the Big butterflies can be a 
bit slow because GPU needs to “lookup” values 
across multiple blocks of memory.

• Six step help reduce memory requirements because 
of the smaller sized FFT



GPU Parallelization of FFT



CUDA vs Fragment Shaders/Compute Shaders
• CUDA platform is a 

software layer that gives 
direct access to the GPU's 
virtual instruction set and 
parallel computational 
elements

• On NVIDIA GPU 
architectures CuFFT
library can be used to 
perform FFT 

• Development very easy 
and the hard parts of FFT 
are already done.

• Disadvantages: CuFFT is 
closed source. CUDA only 
available with NVIDIA 
GPU

• Alternative: Vertex/Fragment 
Shaders

• Programmed with C/C++ and 
OpenGL 2.0 libraries and above

• “All” GPU can support.
• Disadvantages: Vertex/Fragment 

shader truly designed for 
graphics, so effectively we 
“disguise” our data as RGBA 
values. Development and 
debugging a bit of a nightmare. 
Struggles to run in “headless” 
mode. Must have display 
attached.

• Alternative: Compute Shaders! 
Very Open CL-esque. But only 
supported on “new” GPU. 
OpenGL 4.3 and above.



GPU Compute Shader Implementation
• A few optimizations I have done with Compute 

Shader FFTs
• Pre-computed Omega table and Bit Reversal Table
• GPU’s can perform SIMD (single instruction multiple 

data) calculations. Hardware optimized to calculate 4 
floating point values (RGBA pixel data, remember 
GPU’s really designed for graphics)

• GPU’s better with performing multiple calculations 
more than data lookups in the butterflies. So Radix 2 
is used instead of Radix 4.

• Input Complex Data compacted into a VEC4. Reduces 
further the amount of data read across multiple 
memory chunks.. Each core can do 2 sets of 
butterflies at the same time.
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Performance of Compute Shader vs 
CUDA CuFFT

• Some good news, execution timing of 
optimized Compute Shader FFT seems very 
fast and possibly could be a little faster than 
CuFFT

• Bad news… There are some technicalities to 
solve to efficiently transfer data between GPU 
– CPU.  



Why Embedded GPU/Multicore?
• Why not a more powerful machine? EG For GPU 

Computing a K40…
• For SKA, we also need to worry about power 

efficiency.
• Tests have shown that embedded mobile GPU 

such as the Tegra K1 is more efficient in terms of 
FLOPS per Watt than the Tesla K40 



Tesla K40 + CPU Tegra K1 SOC

Single Precision Peak 4.2 TeraFLOPS 326 GigaFLOPS

Single Precision Matrix Multiply 3.8 TeraFLOPS 290 GigaFLOPS

Memory 12GB @ 288 GB/s 2GB @ 14.9 GB/s

Power (CPU + GPU) 385 Watts 11 Watts

FLOPS PER WATT 10 GigaFLOPS 26 GigaFLOPS

GPU Performance Comparison

GPU Test FFT Throughput Power

Tegra K1 SOC 9.81 mS 11 Watts

Tesla K40 + Xeon 85 CPU 0.64 mS 300 Watts

262144 point complex to complex FFT (single precision) (CUDA)

K40 ~27 times power 
consumption of TK1

K40 ~15 times FFT 
throughput efficiency 

over TK1



What Next, Future Work

• Continue developing FFT for Epiphany
• For TK1 utilizing Compute Shaders, work out 

delay in data transfer from CPU to GPU.
• Test performance on NVIDIA X1 (next step up 

from TK1)
• Finalize which low power multicore architecture 

is best in terms of FFT throughput performance 
and power consumption.



Questions? 
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