
FFT Optimizations for GPU and
Many-Core Architectures

By Seth Hall
AUT

High Performance Computing Research Lab

Who am I?
• New-ish AUT Lecturer
• 0.2 FTE on SKA under the HPC Research Lab
• Involved in software development
• Prototyping in GPU computing, many-core

architectures and low-power parallelization.
• Document prototyping test reports during the

course of the project.

Fast Fourier Transforms (FFT)
• Main algorithm I am looking at is FFT
• FFT is an efficient way to do Fourier transforms

which convert a signal between its original
domain (often time or space) and its
representation in the frequency domain.

• Used in the Correlator where digitized data from
the radio telescope is collected and processed
using FFT. Also used in Pulsar Searching and the
Imaging Pipeline.

RADIX-2
Decimation In
Frequency FFT

6 Step FFT
• For very large FFT’s, Can be more efficient to

break it up using a “6 Step” FFT
• For an N size FFT we can break it up into two sets

of m x n number of FFTs. Eg for a 16 point FFT we
can beak into a 4x4 or 2 x 8.

• Most of the testing in this work is done on 218
point complex FFT. So 6 step done with 512x512
point FFTs

• We can choose the value of m and n based on
hardware architecture (eg amount of memory on
processing core cache).

1. Arrange data (Group same colours together).
2. Perform m lots of n point FFTs
3. Rearrange data (corner turn,gsame colours

together).
4. Multiply all values by twiddle correction
5. Perform n lots of m point FFTs
6. Rearrange data back (corner turn)

FFT
Butterflies

FFT
Butterflies

Low Power Devices Being Tested

• Adapteva Epiphany Parallella
• NVIDIA Jetson TK1
• Kalray MPPA

Adaptiva Epiphany Parallella
• Company founded via a Kick

Starter campaign
• Dual Core ARM A9 Processor
• Epiphany coprocessor with

16 high performance RISC
cores

• 1 GB RAM
• < 5 watt power consumption
• They have a 64 core product

and developing a board with
4096 RISC cores

NVIDIA Jetson TK1

• Tegra K1 SOC
• NVIDIA Kepler GPU with
192 CUDA cores
• NVIDIA quad-core ARM
Cortex-A15 CPU + low
power companion core

• 2 GB RAM
• Power consumption: 11
watts

Kalray MPPA
• Massively Parallel

Processing Array.
• 5-10 watts power

consumption.
• 256 cores.
• Work undertaken by

Julien and Julien

Epiphany FFT
• Work in Progress
• Promising Architecture, Company claims to be #1 in

terms of throughput / power consumption
• Claims 5 GigaFLOPS per watt on 16 core and 50

GigaFLOPS per watt on 64 core.
• Had several problems with the OS, lots of bugs!!
• Development environment and build tool problems.
• Very bad documentation.
• Tried several languages and libraries for FFT

development on Parallella board including Epiphany
SDK, Open CL, E-Python and Epiphany BSP (Bulk
Synchronous Parallel) – works well…… so far

Multicore Parallelization

How things are implemented on GPU

• GPU’s have many more cores to do computations in
parallel.

• Great for mathematical computations
• Not good for code branching.
• GPU can load in blocks of data to onboard memory.

However for large FFT’s the Big butterflies can be a
bit slow because GPU needs to “lookup” values
across multiple blocks of memory.

• Six step help reduce memory requirements because
of the smaller sized FFT

GPU Parallelization of FFT

CUDA vs Fragment Shaders/Compute Shaders
• CUDA platform is a

software layer that gives
direct access to the GPU's
virtual instruction set and
parallel computational
elements

• On NVIDIA GPU
architectures CuFFT
library can be used to
perform FFT

• Development very easy
and the hard parts of FFT
are already done.

• Disadvantages: CuFFT is
closed source. CUDA only
available with NVIDIA
GPU

• Alternative: Vertex/Fragment
Shaders

• Programmed with C/C++ and
OpenGL 2.0 libraries and above

• “All” GPU can support.
• Disadvantages: Vertex/Fragment

shader truly designed for
graphics, so effectively we
“disguise” our data as RGBA
values. Development and
debugging a bit of a nightmare.
Struggles to run in “headless”
mode. Must have display
attached.

• Alternative: Compute Shaders!
Very Open CL-esque. But only
supported on “new” GPU.
OpenGL 4.3 and above.

GPU Compute Shader Implementation
• A few optimizations I have done with Compute

Shader FFTs
• Pre-computed Omega table and Bit Reversal Table
• GPU’s can perform SIMD (single instruction multiple

data) calculations. Hardware optimized to calculate 4
floating point values (RGBA pixel data, remember
GPU’s really designed for graphics)

• GPU’s better with performing multiple calculations
more than data lookups in the butterflies. So Radix 2
is used instead of Radix 4.

• Input Complex Data compacted into a VEC4. Reduces
further the amount of data read across multiple
memory chunks.. Each core can do 2 sets of
butterflies at the same time.

R0 C0

R1 C1

. .

. .

. .

. .

. .

. .

R8 C8

. .

. .

. .

. .

. .

. .

R15 C15

Reading across a
big chunk of

memory, possibly
multiple chunks

C0 R0 C8 R8

C1 R1 C1 R1

. . . .

. . . .

. . . .

. . . .

. . . .
C7 R7 C15 R15

C0 R0 C8 R8

C1 R1 C1 R1

. . . .

. . . .

. . . .

. . . .

. . . .
C7 R7 C15 R15

Butterfly on first
pass in same

chunk of memory,
can save on

computation times
by performing

SIMD vec4
operations on

complex numbers

C0 R0 C8 R8

C1 R1 C1 R1

. . . .

. . . .

. . . .

. . . .

. . . .
C7 R7 C15 R15

Next step, each core
processing the data

can do two
butterflies at the

same time.
Butterflies now
smaller so less

chance data across
different chunks of

memory

Stored as Vec4

Performance of Compute Shader vs
CUDA CuFFT

• Some good news, execution timing of
optimized Compute Shader FFT seems very
fast and possibly could be a little faster than
CuFFT

• Bad news… There are some technicalities to
solve to efficiently transfer data between GPU
– CPU.

Why Embedded GPU/Multicore?
• Why not a more powerful machine? EG For GPU

Computing a K40…
• For SKA, we also need to worry about power

efficiency.
• Tests have shown that embedded mobile GPU

such as the Tegra K1 is more efficient in terms of
FLOPS per Watt than the Tesla K40

Tesla K40 + CPU Tegra K1 SOC

Single Precision Peak 4.2 TeraFLOPS 326 GigaFLOPS

Single Precision Matrix Multiply 3.8 TeraFLOPS 290 GigaFLOPS

Memory 12GB @ 288 GB/s 2GB @ 14.9 GB/s

Power (CPU + GPU) 385 Watts 11 Watts

FLOPS PER WATT 10 GigaFLOPS 26 GigaFLOPS

GPU Performance Comparison

GPU Test FFT Throughput Power

Tegra K1 SOC 9.81 mS 11 Watts

Tesla K40 + Xeon 85 CPU 0.64 mS 300 Watts

262144 point complex to complex FFT (single precision) (CUDA)

K40 ~27 times power
consumption of TK1

K40 ~15 times FFT
throughput efficiency

over TK1

What Next, Future Work

• Continue developing FFT for Epiphany
• For TK1 utilizing Compute Shaders, work out

delay in data transfer from CPU to GPU.
• Test performance on NVIDIA X1 (next step up

from TK1)
• Finalize which low power multicore architecture

is best in terms of FFT throughput performance
and power consumption.

Questions?

	FFT Optimizations for GPU and Many-Core Architectures
	Who am I?
	Fast Fourier Transforms (FFT)
	Slide Number 4
	6 Step FFT
	Slide Number 6
	Low Power Devices Being Tested
	Adaptiva Epiphany Parallella
	NVIDIA Jetson TK1
	Kalray MPPA
	Epiphany FFT
	Multicore Parallelization
	How things are implemented on GPU
	GPU Parallelization of FFT
	CUDA vs Fragment Shaders/Compute Shaders
	GPU Compute Shader Implementation
	Slide Number 17
	Slide Number 18
	Performance of Compute Shader vs �CUDA CuFFT
	Why Embedded GPU/Multicore?
	GPU Performance Comparison
	What Next, Future Work
	Questions?

