

Next Generation FPGA / Gemini

John Bunton CSIRO Astronomy and Space Science

14th February 2019 - C4SKA @ AUT

perentie

SKA Low Correlator & Beamformer

FPGA History

- Start
- The Revolution of 2000
- Evolution parameters for correlators and beamformers
- Second revolution 2019
 - HBM
 - Multicore
 - RFSoC

Gemini riding the revolution The GPU challenge

Early FPGAs (Last Century)

Model	Launch	Logic Block									
XC2018	1985	100			4 ۱	/aria	ble	4	?		
XC4000	1999	6272			4 ۱	/arial	oles	8	80MF	Ηz	
XC40001999Only LogicNo multipliersNo Serial I/ONo block memory											
				_ +		- -	- -	'	–		

1

¢Þ

¢

谭

む

¢Þ

眥

t,

U

¢

E

Ę₽

14th February 2019 - C4SKA @ AUT

3

1999 to 2002 Revolution

Model	Year	Kilo LUTs	RAM 18kbit	DSP	TMACS	SERDES Gbps	CPU
Virtex-E	1999	36	4kit x 208				
Virtex-II	2000	93	168	164	0.034		
Virtex-II Pro	2002	88	444	444	0.11	120	PowerPC

In 3 years we went from a logic array to an FPGA capable of true signal process

High bandwidth on-chip RAM, True multipliers and high speed I/O, even on chip processor (PowerPC)

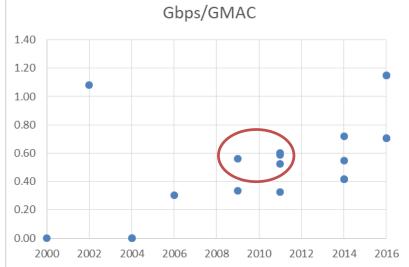
2005 to Now - Evolution

Model	Year	Kilo LUTs	RAM 18kbit	DSP	TMACS	SERDES Gbps
Virtex-4	2004	55	320	512	0.14	
Virtex-5	2006	150	1032	1056	0.3	90
Virtex-6	2009	298	2128	2016	0.7	238
Kintex-7	2011	359	1910	1920	0.7	400
Kintex UltraScale	2014	2533	4320	5520	2.4	1024
Virtex UltraScale+	2016	1728	5200 + Ultra	12288	6.0	4000

Initially backwards – no CPU, no SERDES (V4) CABB correlator - VII-Pro for I/O and V4-55 for DSP

Return of SERDES to Standard Part

• 2006 - Virtex 5

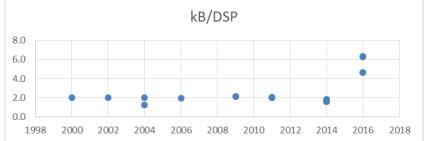

Sufficient SERDES that data connection by single

ended links not needed

• 2009-11 Virtex-6, Kintex-7

All processing integer

Astronomy needs 0.6Gbps/GMAC



Internal Memory (High Speed)

Improved Internal memory depth

- 2016 UltraScale+
- UltraRAM 288kbit RAMs, Up to 45MB on chip
 - Plus 12MB of 18kbit RAMs

But CSIRO designs still needed external DRAM

- Mid Speed mainly big buffers for corner turn operation
- Increases with DSPs 1 per Virtex-5, 2 Kintex-7, 4 for UltraScale
- 8 DRAM per FPGA would be needed for Ultrascale+ ???? 14th February 2019 - C4SKA @ AUT

Gemini HMC

In 2016 a solution to the fast-large memory problem was Hybrid memory Cube

- DRAM with a SERDES interface.
- Intended for shared memory in multi-CPU system
- Must sacrifice external I/O to get DRAM bandwidth

Proof of concept built

- UltraScale+
- Four HMC arrowed
- Four 100G I/O
- Three MBO TX/RX

Ultrascale+ HBM

Unfortunately the HMC part used on the Proof of Concept board immediately went end-of-life But both Xilinx and Altera announced FPGAs with

direct attach DRAM: High Bandwidth Memory

- Data from all columns of read available in one cycle
- I/O bandwidth up to 460GBps = 20 external DRAM
 - Sufficient for this generation of processing AND the next
- Available HBM provides at least 650kB per DSP (L2 cache)
 - High-speed memory 2-6kB per DSP

(L1 cache)

But HBM not available until late 2018

• To develop solution further a Non-HBM Ultrascale+ board built

One external DRAM for very deep slow memory 4x100G QSFP+, 3x300G Mid Board Optics

Gemini HBM

Board under construction

- UltraScale+ HBM part procured
- Swap FPGA for HBM part
- Due June 2019 3.7 Tbps to/from HBM
- **1.3 Tbps optical I/0**

GPUs said to easier to program

But available only in conjunction with server

- Interface PCI
- Can design FGPA to meet interface requirements
 - Great for high I/O systems, e.g. switches

GPUs floating point – FPGA fixed point

 Fixed point OK for radioastronomy correlators and beamformers

Multicore Processors

Popular around 2012

- Kalray 256 cores, Adapteva aimed of 1024 cores (delivered 64)
- Achilles heal I/O, and programming

GPU multicore

- V100 adds 640 Tensor cores
 - over 100T FP16 op/sec but only 4x4 matrix operations (FP32add)
- Xilinx UltraScale+ is ~12T 18bit ops/sec,
 - for 8bit can double this, see talk by Norbert Abel
- GPU uses PCI4x16 = 252Gbps
 - Astronomy needs ~0.6Gbps/GMAC = 0.8T 8bit op/sec ???
 - I/O mismatch

FPGA Multicore - Al Engine

Single Instruction Multiple Data

• 512 bit wide data=64Bytes

Fixed and Float

Plus Scalar RISC

Neighbour Al Engines share data (Systolic) __

AXI spans rows and columns

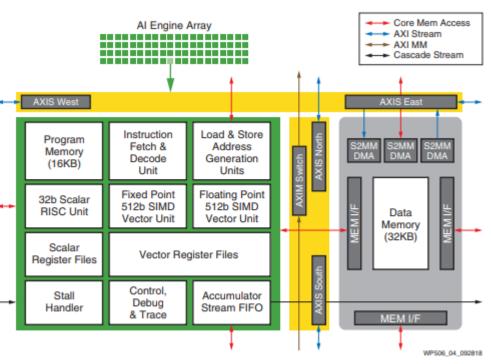


Figure 4: Detail of AI Engine Tile

Xilinx Versal Al

As well as standard FPGA fabric

Up to 400 AI engines

- SIMD, VLIW up to 256 8bit integer ops/clock per Al engine
- Up to 100 Top/sec 8-bit with large accumulators
- 25 Top/s 16-bit
- Native floating point added
 - Up to 6.4 Tflops FP32 SDP applications???

SERDES I/O 1.6Tbps

- Still I/O limited
- Astronomy will use smaller cheaper part to reduce mismatch

VERSAL Memory limits

NO HBM part announced

- Presume this will happen once all the major changes have their teething problems ironed out.
- Need Versal HBM to fully utilise in astronomy

In the mean time only large memory is DRR

- In built DDR controlers 256 bit bus width (128 smaller part).
 - Really need almost an order of magnitude more.

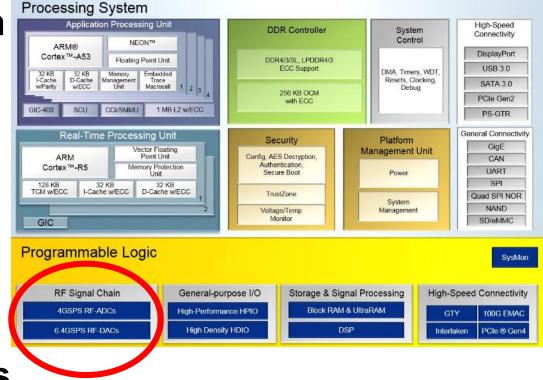
Some functions eg Correlator Low are more compute intensive

• Mix Versal AI with Ultrascale+ HBM in next gen design 14th February 2019 - C4SKA @ AUT

RFSoC - Real World Interface

Effectively cut down Versal

• No Al


Added ADC/DACs

- Interface DONE
- Low power

14th February 2019 - C4SKA @ AUT

• 2 or 4 GSps ADC

Compute for FB SERDES for Outputs

Questions / Discussion? Thank-you!

Additional features

For a while FPGAs included hard coded PCI and Ethernet

VERSAL adds hard coded DDR controllers

Dual core ARM Cortex A72 and R5 added

- 256kB memory,
- Ethernet (x2); UART (x2); CAN-FD (x2); USB 2.0 (x1); SPI (x2); I2C (x2)
- Move Command and Control from separate servers to ARMs?
- Phase computation?
- ??